Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtwellen ermöglichen bevorzugten Bindungsbruch in symmetrischen Molekülen

08.05.2014

Ein internationales Wissenschaftlerteam hat eine Kontrollmöglichkeit gefunden, mit Hilfe von Lichtwellen eines Femtosekundenpulses selektiv C-H Bindungen in symmetrischen Kohlenwasserstoffmolekülen zum Schwingen und Brechen zu bringen.

Chemische Bindungen zwischen Kohlenstoff- und Wasserstoffatomen gehören zu den stärksten in der Natur. Für die chemische Synthese und die Entwicklung neuer biologisch-aktiver Moleküle ist es von großem Interesse, insbesondere in symmetrischen Molekülen, diese Bindungen selektiv zu brechen.


Abbildung: Illustration der gerichteten Protonenemission aus Acetylen mit einer spezifischen Laserwellenform. Die kohärente Überlagerung der Schwingungen, die für den selektiven Bindungsbruch verantwortlich ist, entsteht durch eine Kombination aus der Laseranregung der asymmetrischen CH-Streckschwingung und der Anregung der symmetrischen CH-Streckschwingung in den Ionisationsschritten, die durch einen Farbwechsel von Grün (neutral) über Gelb (Kation) nach Orange (Dikation) angedeutet sind. (Foto: Christian Hackenberger, MPQ, Abt. Attosekundenphysik)

Am Beispiel von Acetylen-Ionen hat jetzt ein internationales Wissenschaftlerteam gezeigt, dass dies mit ultrakurzen Lichtpulsen maßgeschneiderter Wellenform möglich ist. Die Forscher fanden heraus, dass sie durch Variation der Pulsform steuern können, welche der beiden C-H Bindungen des symmetrischen H-C≡C-H Moleküls bricht. In ihrer Veröffentlichung (Nature Communications, DOI:10.1038/ncomms4800) erklären sie ihre Ergebnisse mit einem neuen Quantenkontrollmechanismus, der auf der Kombination licht-induzierter Schwingungen beruht.

Kohlenwasserstoffe spielen eine bedeutende Rolle in der organischen Chemie, der Verbrennung und der Katalyse. Der selektive C-H Bindungsbruch könnte neue Perspektiven für die Synthese von Molekülen mit neuartigen Funktionalitäten und Anwendungen in der Medizin eröffnen. Bisher gab es vor allem für symmetrisch aufgebaute Moleküle kein Verfahren, das diesen Prozess ermöglicht hätte.

Prof. Ali Alnaser (Amerikanische Universität Sharjah, VAE), der sein Forschungsfreisemester in der Abteilung von Prof. Ferenc Krausz am Max-Planck-Institut für Quantenoptik (MPQ) im Rahmen einer Kollaboration zwischen dem MPQ, der King-Saud Universität (KSU) und der Ludwig-Maximilians-Universität (LMU) verbracht hat, konnte dieses Problem zusammen mit einem Physikerteam unter der Leitung von Prof. Matthias Kling (LMU) mit Hilfe ultrakurzer Lichtpulse lösen.

Mit entscheidend für den Erfolg der Experimente war die Erzeugung der Lichtpulse mit einer hohen Wiederholrate von zehntausend Pulsen pro Sekunde in der Gruppe von Prof. Ulf Kleineberg (LMU), wodurch die Messzeiten gegenüber bisher verfügbaren Systemen reduziert werden konnten. Theoretische Arbeiten aus der Gruppe von Prof. Regina de Vivie-Riedle (LMU) erklären im Einzelnen, welche Vorgänge in der Wechselwirkung von Laserpuls und Molekül zu diesem Effekt führen.

Für ihre experimentellen Untersuchungen verwendeten die Forscher Acetylen (C2H2): In diesem Molekül sind die zwei Kohlenstoffatome über drei Elektronenpaare sehr stark gebunden, während die Wasserstoffatome an den beiden Enden des linearen Moleküls sitzen. Auf einen Molekularstrahl von C2H2-Molekülen in einem sogenannten Reaktionsmikroskop schickten die Wissenschaftler eine Serie von ultrakurzen Pulsen weniger Schwingungszyklen mit einer Dauer von nur vier Femtosekunden (1 fs = 10 hoch minus15 Sekunden). „Als Folge der Wechselwirkung mit der Welle eines Lichtpulses zerfällt das Molekül – nach seiner Doppelionisation – in ein positiv geladenes C2H+ Ion und ein Proton, welche wir beide in dem Reaktionsmikroskop detektieren“, beschreibt Prof. Ali Alnaser.

Für jeden Laserpuls, der mit den Molekülen in Wechselwirkung tritt, wurde die Wellenform exakt vermessen. Da Acetylen ein symmetrisches Molekül ist, brechen die C-H Bindungen auf beiden Seiten typischerweise mit der gleichen Wahrscheinlichkeit. In ihrem Experiment konnten die Forscher allerdings nachweisen, dass sich die Wahrscheinlichkeit, die linke bzw. die rechte C-H Bindung zu brechen, mit der Wellenform des Laserpulses steuern lässt (siehe Abbildung).

Quantendynamische Simulationen zeigen, auf welche Art der Laser-Molekül-Wechselwirkung dieser Effekt zurückgeht. „Das bereits bekannte Schema, in dem molekulare Reaktionen mittels Elektronendynamik gesteuert werden, welche wiederum mit Hilfe der Wellenform kurzer Laserpulse erzeugt wird, funktioniert hier nicht“, erklärt Prof. de Vivie-Riedle. „Wir haben hier einen neuen Quantenkontrollpfad entdeckt, über den die Reaktion verläuft.“ Danach regt der aus wenigen Zyklen bestehende Laserpuls zunächst diejenigen Schwingungen an, die laser-aktiv sind.

Eine dieser Schwingungen ist die anti-symmetrische Streckschwingung, bei der sich eine C-H Bindung verlängert, während sich die andere verkürzt. Wenn der Laserpuls sein maximales elektrisches Feld erreicht, entfernt er ein Elektron aus der CC-Dreifachbindung; das Molekül wird ionisiert. Bei diesem Prozess werden zusätzlich die laser-inaktiven Schwingungsmoden angeregt. Eine dieser Moden ist die symmetrische CH-Streckschwingung, bei der sich beide H-Atome synchron auf die CC Gruppe zubewegen oder von ihr entfernen. Im weiteren Verlauf des Laserpulses wird das frei gesetzte Elektron auf das molekulare Kation zurückbeschleunigt, entfernt dort ein zweites Elektron, und es entsteht ein Acetylen Dikation, welches schnell in das C2H+ Ion und ein Proton dissoziiert, die in dem Experiment nachgewiesen werden.

„Molekülschwingungen, die unabhängig voneinander angeregt werden, können die Messergebnisse nicht erklären. Voraussetzung für die von der Wellenform abhängige beobachtete Asymmetrie in der Verteilung der Reaktionsprodukte ist ein Quanteneffekt: die kohärente Überlagerung der symmetrischen und anti-symmetrischen Streckschwingung. Als Konsequenz dieser Interferenz kann es dazu kommen, dass nur eine C-H Bindung schwingt, während die andere unverändert bleibt“, erläutert Prof. de Vivie-Riedle. „Diese Art, das Molekül zu beeinflussen, führt zu dem beobachteten spezifischen C-H Bindungsbruch. Die Wellenform des Lasers kontrolliert die Überlagerung der Schwingungsmoden und damit die Richtung in die sich das Schwingungswellenpacket im Dikation bewegt“, ergänzt Prof. Matthias Kling.

Die Forscher sehen die Ergebnisse ihrer Studien als „proof-of-principle“ für einen neuen Quantenkontrollmechanismus. „Die Kontrolle über die Laserwellenform ist allgemeiner Natur. Wir vermuten deshalb, dass die Methode auch für andere, komplexere molekulare Prozesse funktionieren könnte“, sagt Prof. Ali Alnaser, der seine Forschungen in diese Richtung ausweiten will. Er fügt hinzu: „In unserer Arbeit haben wir die Schwingungen nichtresonant angeregt. Eine bessere Kontrolle könnten wir erzielen, wenn wir eine resonante Anregung mit ultrakurzen Lichtpulsen im mittleren Infrarot vornehmen. Die dafür notwendigen Lasersysteme werden derzeit entwickelt. Sie ebnen den Weg, das Potential des neuen Kontrollschemas voll auszuschöpfen.“ [MK/OM]

Originalveröffentlichung:

A.S. Alnaser, M. Kübel, R. Siemering, B. Bergues, Nora G. Kling, K.J. Betsch, Y. Deng, J. Schmidt, Z.A. Alahmed, A.M. Azzeer, J. Ullrich, I. Ben-Itzhak, R. Moshammer, U. Kleineberg, F. Krausz, R. de Vivie-Riedle, and M.F. Kling
Sub-femtosecond Steering of Hydrocarbon Deprotonation through Superposition of Vibrational Modes
Nature Communications, DOI:10.1038/ncomms4800, 8. Mai 2014

Kontakt:

Prof. Ali Alnaser
Physics Department,
American University of Sharjah
PO Box 26666, Sharjah, United Arab Emirates
Telefon: +97 / 165 152 340
E-Mail: aalnaser@aus.edu

Prof. Dr. Regina de Vivie-Riedle
Ludwig-Maximilians-Universität München
Department Chemie
Butenandt-Straße 11, 81377 München
Telefon: +49 (0)89 / 2180 – 77 533
E-Mail: Regina.de_Vivie@cup.uni-muenchen.de

Prof. Dr. Matthias Kling
Labor für Attosekundenphysik
Ludwig-Maximilians-Universität München,
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, Garching
Telefon: +49 (0)89 / 32 905 -234
E-Mail: matthias.kling@mpq.mpg.de

Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik, Garching
Presse- und Öffentlichkeitsarbeit
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics