Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben im All finden

26.06.2018

Astrophysiker der Universität Bern haben an einer Reihe von NASA-Studien mitgewirkt. Diese umfassen Strategien für die Suche nach Spuren von Leben jenseits unseres Sonnensystems. Die Forscher gehen davon aus, dass Hinweise in der Atmosphäre einiger potenziell bewohnbarer Planeten vor 2030 entdeckt werden könnten.

Vor drei Jahren hat die NASA ein Netzwerk von Forschenden aus aller Welt gegründet. Es soll Technologien vorantreiben und helfen, die folgende Frage zu klären: Sind wir allein im Universum? Russell Deitrick und Daniel Angerhausen von der Universität Bern sind Teil dieser internationalen Gruppe, die nun eine umfassende Reihe von Arbeiten zur Suche nach Spuren von Leben auf extrasolaren Planeten ausserhalb unseres Sonnensystems vorlegt.


In Chile baut die Europäische Südsternwarte ESO das Extremely Large Telescope (ELT) mit einem Spiegeldurchmesser von 39 Metern.

ESO/L. Calçada/Ace Consortium


Das James-Webb-Weltraumteleskop ist der Nachfolger des Hubble-Teleskops und soll 2020 gestartet werden.

JWST Artist impression, NASA/Northrop Grumman

Da wir derzeit nicht zu Exoplaneten reisen können, müssen die Forschenden sie mit Hilfe von Teleskopen aus der Ferne auf so genannte Biosignaturen untersuchen. Deitrick und Angerhausen, Astrophysiker am Center for Space and Habitability (CSH) der Universität Bern und des Nationalen Forschungsschwerpunkts PlanetS, sind Mitautoren eines Artikels über die bestehenden und zukünftigen Teleskope auf der Erde und im Weltraum. Die Studien sind jetzt in der Juni-Ausgabe 2018 der Zeitschrift Astrobiology erschienen.

«Leben zu erkennen ist eine grosse Herausforderung», sagt Russell Deitrick: «Fast jeden Tag wechsle ich meine Haltung von hoffnungsvoll zu zynisch und wieder zurück.» Er glaubt, dass man sich in den nächsten zehn Jahren vor allem darauf konzentrieren wird, die Exoplaneten im Allgemeinen und das Lebens auf der Erde besser zu verstehen.

«Wahrscheinlich werden wir im darauffolgenden Jahrzehnt die Teleskope und neuen Technologien erhalten, die wirklich eine Chance haben, potenzielle Biosignaturen zu erkennen», fasst er zusammen. Daniel Angerhausen kommentiert seine Arbeit wie folgt: «Wenn Leute fragen, was mein grösster Traum ist, sage ich immer, dass ich Teil des Teams sein will, das Leben im Weltraum findet. Diese Arbeiten sind ein grosser Schritt in jene Richtung und zeigen den Weg, den wir gehen werden.»

Kühle Sterne zuerst

In ihrer Studie zeigen die Astrophysiker, wie sich die Forschung entwickeln wird – von den aktuellen Abschätzungen der Grösse und Umlaufbahnen dieser fernen Welten zu einer gründlichen Analyse ihrer chemischen Zusammensetzung und schliesslich zur Frage, ob sie Leben beherbergen. Das James-Webb-Weltraumteleskop, das 2020 starten wird, und Bodenteleskope der 30-Meter-Klasse Anfang der 2020er Jahre sollen systematische chemische Untersuchungen von potenziell bewohnbaren Planeten ermöglichen, die um kühlere Sterne kreisen.

Um solche Ziele bei sonnenähnlichen Sterne zu untersuchen, braucht es jedoch wahrscheinlich eine spezielle Weltraummission, die Bilder liefern kann. Die erste, derartige Möglichkeit ist WFIRST (Wide Field Infrared Survey Telescope), ein Teleskop, das Mitte der 2020er Jahre gestartet werden soll. Die Forschenden gehen davon aus, dass der Nachweis von Signaturen in der Atmosphäere einiger potenziell bewohnbarer Planeten möglicherweise vor 2030 erfolgen wird. Dies ist ein wichtiger Meilenstein auf dem Weg zu einer detaillierteren, systematischen Erhebung nach 2030.

Aber Russell Deitrick warnt: «Was wir entdecken, wird keineswegs eindeutig sein. Daher ist der Nachweis einer Biosignatur wohl bloss der Anfang auf der Suche nach Leben. Danach folgt das Überprüfen und Verstehen – deshalb geben wir uns heute so viel Mühe mit dieser Arbeit.»

Tatsächlich diskutieren die Forscher in einem der jetzt veröffentlichten Artikel, wie die Natur sie austricksen könnte, indem sie Lebenszeichen auf einem Planeten finden, wo es keine Lebewesen gibt und umgekehrt. Die Autoren untersuchen, wie ein Planet Sauerstoff ohne Lebewesen herstellen kann und wie Planeten mit Leben andere Spuren aufweisen könnten als Sauerstoff, der auf der heutigen Erde reichlich vorhanden ist.

Das vom Astrobiologie-Programm der NASA gegründete internationale Netzwerk heisst «Nexus for Exoplanet System Science», kurz NExSS. Dieser Gruppe anzugehören, ist für die Astrophysiker in Bern ein besonderes Erlebnis. «Dieses Unterfangen bringt so viele Disziplinen zusammen», sagt Russell Deitrick: «Es fordert einen wirklich heraus, anders zu denken.» Und Daniel Angerhausen fügt hinzu: «Ich bin stolz und glücklich, ein kleines Zahnrad in dieser erstaunlichen und vielfältigen Gemeinschaft zu sein.»

Weitere Informationen:

https://tinyurl.com/Astrobiologie
https://nexss.info/

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Berichte zu: James-Webb-Weltraumteleskop NASA Sauerstoff Teleskope Universum Weltraum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuartiges Antibiotikum gegen Problemkeime in Sicht
21.11.2019 | Justus-Liebig-Universität Gießen

nachricht Neue Forschungsinitiative CHEM|ampere: Nachhaltige chemische Produktion mit Elektrizität
21.11.2019 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnesiummangel stoppt Wachstum von Krankheitserregern

22.11.2019 | Medizin Gesundheit

Entwicklungen in der Schifffahrt schneller und effizienter testen

22.11.2019 | Verkehr Logistik

Fehlende Zellprogrammierung führt zu Hodentumoren

22.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics