Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben im All finden

26.06.2018

Astrophysiker der Universität Bern haben an einer Reihe von NASA-Studien mitgewirkt. Diese umfassen Strategien für die Suche nach Spuren von Leben jenseits unseres Sonnensystems. Die Forscher gehen davon aus, dass Hinweise in der Atmosphäre einiger potenziell bewohnbarer Planeten vor 2030 entdeckt werden könnten.

Vor drei Jahren hat die NASA ein Netzwerk von Forschenden aus aller Welt gegründet. Es soll Technologien vorantreiben und helfen, die folgende Frage zu klären: Sind wir allein im Universum? Russell Deitrick und Daniel Angerhausen von der Universität Bern sind Teil dieser internationalen Gruppe, die nun eine umfassende Reihe von Arbeiten zur Suche nach Spuren von Leben auf extrasolaren Planeten ausserhalb unseres Sonnensystems vorlegt.


In Chile baut die Europäische Südsternwarte ESO das Extremely Large Telescope (ELT) mit einem Spiegeldurchmesser von 39 Metern.

ESO/L. Calçada/Ace Consortium


Das James-Webb-Weltraumteleskop ist der Nachfolger des Hubble-Teleskops und soll 2020 gestartet werden.

JWST Artist impression, NASA/Northrop Grumman

Da wir derzeit nicht zu Exoplaneten reisen können, müssen die Forschenden sie mit Hilfe von Teleskopen aus der Ferne auf so genannte Biosignaturen untersuchen. Deitrick und Angerhausen, Astrophysiker am Center for Space and Habitability (CSH) der Universität Bern und des Nationalen Forschungsschwerpunkts PlanetS, sind Mitautoren eines Artikels über die bestehenden und zukünftigen Teleskope auf der Erde und im Weltraum. Die Studien sind jetzt in der Juni-Ausgabe 2018 der Zeitschrift Astrobiology erschienen.

«Leben zu erkennen ist eine grosse Herausforderung», sagt Russell Deitrick: «Fast jeden Tag wechsle ich meine Haltung von hoffnungsvoll zu zynisch und wieder zurück.» Er glaubt, dass man sich in den nächsten zehn Jahren vor allem darauf konzentrieren wird, die Exoplaneten im Allgemeinen und das Lebens auf der Erde besser zu verstehen.

«Wahrscheinlich werden wir im darauffolgenden Jahrzehnt die Teleskope und neuen Technologien erhalten, die wirklich eine Chance haben, potenzielle Biosignaturen zu erkennen», fasst er zusammen. Daniel Angerhausen kommentiert seine Arbeit wie folgt: «Wenn Leute fragen, was mein grösster Traum ist, sage ich immer, dass ich Teil des Teams sein will, das Leben im Weltraum findet. Diese Arbeiten sind ein grosser Schritt in jene Richtung und zeigen den Weg, den wir gehen werden.»

Kühle Sterne zuerst

In ihrer Studie zeigen die Astrophysiker, wie sich die Forschung entwickeln wird – von den aktuellen Abschätzungen der Grösse und Umlaufbahnen dieser fernen Welten zu einer gründlichen Analyse ihrer chemischen Zusammensetzung und schliesslich zur Frage, ob sie Leben beherbergen. Das James-Webb-Weltraumteleskop, das 2020 starten wird, und Bodenteleskope der 30-Meter-Klasse Anfang der 2020er Jahre sollen systematische chemische Untersuchungen von potenziell bewohnbaren Planeten ermöglichen, die um kühlere Sterne kreisen.

Um solche Ziele bei sonnenähnlichen Sterne zu untersuchen, braucht es jedoch wahrscheinlich eine spezielle Weltraummission, die Bilder liefern kann. Die erste, derartige Möglichkeit ist WFIRST (Wide Field Infrared Survey Telescope), ein Teleskop, das Mitte der 2020er Jahre gestartet werden soll. Die Forschenden gehen davon aus, dass der Nachweis von Signaturen in der Atmosphäere einiger potenziell bewohnbarer Planeten möglicherweise vor 2030 erfolgen wird. Dies ist ein wichtiger Meilenstein auf dem Weg zu einer detaillierteren, systematischen Erhebung nach 2030.

Aber Russell Deitrick warnt: «Was wir entdecken, wird keineswegs eindeutig sein. Daher ist der Nachweis einer Biosignatur wohl bloss der Anfang auf der Suche nach Leben. Danach folgt das Überprüfen und Verstehen – deshalb geben wir uns heute so viel Mühe mit dieser Arbeit.»

Tatsächlich diskutieren die Forscher in einem der jetzt veröffentlichten Artikel, wie die Natur sie austricksen könnte, indem sie Lebenszeichen auf einem Planeten finden, wo es keine Lebewesen gibt und umgekehrt. Die Autoren untersuchen, wie ein Planet Sauerstoff ohne Lebewesen herstellen kann und wie Planeten mit Leben andere Spuren aufweisen könnten als Sauerstoff, der auf der heutigen Erde reichlich vorhanden ist.

Das vom Astrobiologie-Programm der NASA gegründete internationale Netzwerk heisst «Nexus for Exoplanet System Science», kurz NExSS. Dieser Gruppe anzugehören, ist für die Astrophysiker in Bern ein besonderes Erlebnis. «Dieses Unterfangen bringt so viele Disziplinen zusammen», sagt Russell Deitrick: «Es fordert einen wirklich heraus, anders zu denken.» Und Daniel Angerhausen fügt hinzu: «Ich bin stolz und glücklich, ein kleines Zahnrad in dieser erstaunlichen und vielfältigen Gemeinschaft zu sein.»

Weitere Informationen:

https://tinyurl.com/Astrobiologie
https://nexss.info/

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Berichte zu: James-Webb-Weltraumteleskop NASA Sauerstoff Teleskope Universum Weltraum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics