Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlendioxid als Rohstoff für die Umwandlung von Solarstrom in wertvolle chemische Produkte

06.11.2015

Drei neue Verbundprojekte unter Leitung des TU-Fachgebietes „Elektrochemische Katalyse und Materialien“ von Prof. Dr. Peter Strasser untersuchen Grundlagen und Anwendungen von elektrochemischen Katalyseprozessen

Auf dem volkswirtschaftlich wichtigen Gebiet der elektrochemischen Katalyseprozesse wurden drei neue Verbundprojekte an der TU Berlin bewilligt. Sprecher aller drei Vorhaben ist Prof. Dr. Peter Strasser, Leiter des Fachgebietes „Elektrochemische Katalyse und Materialien“ am TU-Institut für Chemie.

In allen drei Projekten werden die chemischen Grundlagen und anwendungsrelevanten Aspekte der direkten elektrochemischen Umwandlung von Wasser und Kohlendioxid mit Hilfe von Elektrizität in wertvolle chemische Molekülbausteine für die chemische Industrie oder in Brennstoffe erforscht. Gefördert werden die drei Projekte an der TU Berlin mit insgesamt 2 Millionen Euro für drei Jahre.

Das erste Verbundprojekt „Electrochemical CO2 conversion“ untersucht die kürzlich am Fachgebiet von Prof. Dr. Peter Strasser entdeckten Kohlenstoffkatalysatoren für die direkte Umwandlung von Kohlendioxid in Kohlenwasserstoffe (Angewandte Chemie 2015 doi: 10.1002/anie.201502099).

Da bisher Gold und Silber die bevorzugten Katalysatoren für diese Reaktion waren, ist die Erkenntnis, dass kohlenstoffbasierte Materialien Kohlendioxid ebenso effizient katalysieren, von größter Bedeutung. Die Forschungen finden im Rahmen des renommierten Flagship-Programms „Climate-KIC/EnCO2re“ der Europäischen Union statt.

Die TU-Chemiker arbeiten mit Wissenschaftlerinnen und Wissenschaftlern der Ruhr-Universität Bochum und der Universität Kopenhagen sowie mit der Firma Covestro (ehemals Bayer Material Science) zusammen. Fördersumme für das TU-Fachgebiet: 400.000 Euro.

Das zweite Verbundprojekt befasst sich mit der direkten Umwandlung von Kohlendioxid zu Kohlenwasserstoffen auf nanostrukturierten Metallkatalysatoren. Dazu werden neue chemische Analysestrategien, sogenannte „operando“-Methoden, entwickelt und eingesetzt.

Sie erlauben eine direkte Beobachtung der reagierenden Moleküle während der chemischen Umwandlung. Gefördert wird es vom Bundesministerium für Forschung und Bildung (BMBF). Partner sind die Ruhr-Universität Bochum und die Freie Universität Berlin. Fördersumme für das TU-Fachgebiet: 1,2 Millionen Euro.

Das dritte Verbundprojekt beschäftigt sich mit dem molekularen Verständnis der elektrokatalytischen Prozesse an der Grenzfläche zwischen Flüssigkeit und festem Katalysator in Photoelektrochemischen Zellen (PEZ). Im Vordergrund steht hier die elektrochemische Spaltung von Wasser zur Erzeugung von Wasserstoff und von anderen chemischen Zwischenprodukten.

Finanziert wird es von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Schwerpunktprogramms SPP1613 „Fuels Produced Regeneratively Through Light-Driven Water Splitting“. Hier kooperiert das Fachgebiet von Prof. Dr. Peter Strasser mit dem Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin-Dahlem. Fördersumme für das TU-Fachgebiet: 400.000 Euro.

Bei der Erforschung der chemischen Grundlagen und anwendungsrelevanten Aspekten der elektrochemischen Umwandlung von Wasser und Kohlendioxid mit Hilfe von Elektrizität in chemische Molekülbausteine für die chemische Industrie oder in Brennstoffe kommen zwei Verfahren in Betracht: Das eine nutzt Photovoltaik- oder Windkraftanlagen zur Umwandlung von Sonnenlicht in Strom.

Dieser wird anschließend in neuartigen Vorrichtungen (Elektrolyseuren) mit einem elektrochemischen Katalysatormaterial zusammen mit Wasser und Kohlendioxid direkt zu Wasserstoff, Methan, Ethylene, Methanol, Ethanol und einer Vielzahl weiterer chemischer Produkte umgewandelt. Das andere Verfahren nutzt die Kombination aus einem Halbleiter wie Silizium und einem Elektrokatalysatormaterial in einer integrierten „Photoelektrochemischen Zelle (PEZ)“, die bei Sonnenbestrahlung ebenfalls aus Kohlendioxid und Wasser chemische Produkte oder Brennstoffe liefert. Die PEZ-Technologie ist kompakter als die Photovoltaik-Elektrolyseur-Technologie, allerdings ist die Integration von Sonnenlichtnutzung und elektrochemischer Katalyse eine große wissenschaftliche und technische Herausforderung hinsichtlich der Leistungsfähigkeit und der Lebensdauer der Photoelektrochemischen Zellen.

Über die atomaren Details, wie die elektrochemischen Reaktionen an der Oberfläche der Katalysatoren molekular ablaufen, ist sehr wenig bekannt. Ebenso weiß man kaum etwas, wie die atomare Zusammensetzung und Struktur des Katalysators die Art und Menge der entstehenden Produkte beeinflussen kann. Das Ziel aller drei Verbundprojekte ist deshalb, die elektrochemischen Prozesse anhand verschiedener Katalysatorklassen grundlegend zu verstehen und Methoden zu entwickeln, um die chemischen Prozesse während der Reaktion zu studieren.

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Peter Strasser
TU Berlin
Fachgebiet Elektrochemische Katalyse und Materialien
Tel.: 030/314-29542
E-Mail: pstrasser@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hansdampf im Katalyselabor: LIKAT-Chemiker vereinfachen die Amin-Synthese
22.10.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Weniger Pestizide, mehr Bildung: 9-Punkte-Plan gegen das Insektensterben
22.10.2018 | Universität Hohenheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungsnachrichten

Hansdampf im Katalyselabor: LIKAT-Chemiker vereinfachen die Amin-Synthese

22.10.2018 | Biowissenschaften Chemie

Weniger Pestizide, mehr Bildung: 9-Punkte-Plan gegen das Insektensterben

22.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics