Kaliumkanal, den Viren ihre Wirte bauen lassen, kommt auch in Gehirnnervenzellen vor

Wer in diesem Sommer zum Baden ans Mittelmeer fährt, wird kaum ahnen, dass dort jeder Tropfen Meerwasser eine erhebliche Menge DNA enthält, also an Erbsubstanz, die durchaus auch funktionsfähige Gene umfasst.

Diese DNA hat nichts mit einer Verschmutzung des Wassers zu tun; neuere Untersuchungen weisen darauf hin, dass die DNA überwiegend in Form verschiedener Pflanzenviren vorliegt. Ein einziger scheinbar sauberer Wassertropfen kann Tausende Viren enthalten. Für die Badeurlauber sind sie gänzlich harmlos, können sich aber in den Algen mitunter geradezu seuchenartig vermehren.

Zu diesen Viren zählt etwa das Virus EsV-1, das vor einiger Zeit in der Nähe von Neapel in der kleinen Braunalge Ectocarpus siliculosus identifiziert wurde. In einer internationalen Kooperation wird dieses Virus derzeit unter Beteiligung der Arbeitsgruppe von Prof. Dr. Joachim Rassow (Institut für Physiologische Chemie der Ruhr-Universität) näher untersucht. Neue Ergebnisse sind in der aktuellen Ausgabe der Proceedings of the National Academy of Science, USA (PNAS) vorgestellt.

Viren veranlassen den Bau eines Kanals

Viren enthalten in der Regel nur wenig Erbmaterial. Das Genom des AIDS-Virus, HIV, enthält z.B. lediglich neun Gene. Wesentlich größer ist das Genom des EsV-1: Dr. Nicolas Delaroque vom Max-Planck-Institut für chemische Ökologie in Jena ermittelte insgesamt 231 unterschiedliche EsV-1 Gene. „Spannend ist nun die Frage, warum das EsV-1 so viele Gene enthält, und was für Proteine von diesen Genen kodiert werden“, erklärt Prof. Dr. Jochaim Rassow. Interessanterweise kodiert eines der EsV-1-Gene einen kleinen Kaliumkanal, also ein Proteinmolekül, das in einer biologischen Membran eine Pore bildet, durch die hindurch Kaliumionen diffundieren können. Die Pore bildet sich, indem sich jeweils vier gleichartige Proteinmoleküle kreisförmig in der Membran anordnen. Seiner räumlichen Struktur nach sind die Kanäle damit im Prinzip genauso aufgebaut wie die Kaliumkanäle im Nervensystem der Tiere und des Menschen. Ein Virus aus einer Alge kodiert einen Kaliumkanal, der aussieht wie ein Kaliumkanal aus dem Gehirn!

Eigentümlicher Zielfindungsmechanismus

Dieser Befund wirft eine Reihe von Fragen auf, denen inzwischen in einer internationalen Kooperation nachgegangen wird. Beteiligt sind neben den Bochumer Forschern u.a. die Arbeitsgruppen von Prof. Gerhard Thiel (Technische Universität Darmstadt), Prof. Anna Moroni (Università degli Studi di Milano), und Prof. James L. Van Etten (University of Nebraska). Bekanntlich bahnen sich die Gedanken im Gehirn über elektrische Signale ihren Weg, und zwar unter Vermittlung der Ionenkanäle der Nervenzellen. Seltsamerweise wird ein ähnlich gebauter Kanal nun auch von den EsV-1 Viren in der Braunalge angelegt.

Natürlich haben die Algen keine Nervenzellen. Wo bleiben dann die Kaliumkanäle? In der Arbeitsgruppe von Prof. Gerhard Thiel wurde die überraschende Entdeckung gemacht, dass die Kaliumkanäle letztlich in bestimmte Zellorganellen der Alge, die Mitochondrien eingebaut werden. Und woher wissen die Kaliumkanäle, wie sie zu den Mitochondrien gelangen können? „Die Viren haben dazu einen besonderen Mechanismus entwickelt, nämlich ein eigentümliches Zielfindungssignal, das in der Forschung bislang in dieser Form noch unbekannt war“, erklärt Prof. Rassow. Seine Arbeitsgruppe beschäftigt sich schon seit längerer Zeit mit den Wegen, auf denen Proteine zu Mitochondrien gelangen. „Die Viren haben uns gleichsam einen geheimen Gang verraten, der zu den Mitochondrien führt“, erläutert er die Befunde.

Wozu ein Kaliumkanal in den Mitochondrien?

Es bleibt die Frage, was Viren dazu bewegt, die Mitochondrien ihrer Wirtszellen mit derartigen Kanälen auszustatten. Gibt es mitochondriale Kaliumkanäle auch in Zellen, die nicht mit Viren in Berührung gekommen sind? „Interessanterweise wurden Kaliumkanäle in früheren Studien in den Mitochondrien des gesunden Herzmuskels des Menschen nachgewiesen. Hier scheinen sie die Zellen z.B. vor den Folgen eines Herzinfarktes zu schützen“, erklärt Prof. Rassow.

Mitochondriale Kaliumkanäle scheinen Zellen zu stabilisieren. Doch warum sollte sich ein Algenvirus vor einem Herzinfarkt schützen? „Tatsächlich sind Viren immer in der Gefahr, dass sich ihre Wirtszellen schnell selber abtöten, um die benachbarten Zellen vor einer Infektion zu bewahren“, erläutert Prof. Rassow. „Viren haben also ein Interesse daran, ihre Wirtszellen zu stabilisieren. Vielleicht tun sie das in der Braunalge Ectocarpus siliculosus durch den Einbau von Kaliumkanälen.“ Leider ist über die endogenen Kaliumkanäle der Mitochondrien des Herzmuskels bislang kaum etwas bekannt. Vielleicht kann die Kardiologie demnächst etwas von den Pflanzenviren aus dem Mittelmeer lernen.

Titelaufnahme

Balss, J. et al. (2008) Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc. Natl. Acad. Sci. USA 105, 12313-12318.

Weitere Informationen

Prof. Dr. Joachim Rassow, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, Raum MA3/40, 44780 Bochum, Tel. 0234/32-29079; joachim.rassow@rub.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer