Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jedes Atom zählt

05.08.2016

Bösartige Krebszellen wachsen nicht nur schneller als die meisten Körperzellen. Sie sind auch besonders abhängig von dem zellulären Müllverwerter, dem Proteasom, das ausgediente Proteine zerlegt. Bei der Behandlung mancher Krebsarten macht man sich das zunutze: Patienten werden unter anderem mit Inhibitoren behandelt, die das Proteasom blockieren. Der folgende Entsorgungsstau lässt die Krebszelle schließlich absterben. Forscher haben das humane Proteasom nun in zuvor unerreichtem Detail in 3D sichtbar gemacht und den Mechanismus entschlüsselt, mit dem Inhibitoren das Proteasom hemmen. Ihre Erkenntnisse sind wegweisend, um wirksamere Proteasom-Inhibitoren für die Krebstherapie zu entwickeln.

Wie genau zelluläre Maschinen wie das Proteasom funktionieren, lässt sich nur verstehen, wenn man ihren räumlichen Aufbau im Detail kennt. Mit seinen mehr als 50000 Atomen ist der tonnenförmige Müllverwerter für Strukturbiologen allerdings eine echte Herausforderung.


Röntgenstrahlen, die maßgeschneidert auf die Abmessung der Proteinkristalle passen, ermöglichten es den Wissenschaftlern, die Struktur des Proteasoms in bisher unerreichtem Detail aufzuklären.

Hartmut Sebesse / Max-Planck-Institut für biophysikalische Chemie

Wissenschaftlern um Ashwin Chari vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und Gleb Bourenkov vom European Molecular Biology Laboratory (EMBL) ist es nun mittels Röntgenkristallografie gelungen, die dreidimensionale Struktur des menschlichen Proteasoms mit einer Trennschärfe von bis zu 1,8 Ångström aufzuklären – und damit die einzelnen Atome des Müllverwerters sichtbar zu machen.

Im nächsten Schritt bestimmten die Forscher außerdem die Struktur des Proteasoms gebunden von vier verschiedenen Inhibitoren, die bereits klinisch im Einsatz sind oder derzeit in Studien getestet werden. „Dank der stark verbesserten Auflösung im Vergleich zu früheren Proteasom-Strukturen konnten wir erstmals den genauen chemischen Mechanismus ermitteln, mit dem die Inhibitoren das Proteasom blockieren. Dieses Wissen ermöglicht es, das Design der Inhibitoren und damit deren Wirksamkeit zu optimieren. Denn nur maßgeschneiderte Inhibitoren hemmen die Aktivität des Proteasoms perfekt und können es komplett stilllegen“, erklärt Chari, Projektgruppenleiter in der Abteilung Strukturelle Dynamik von Holger Stark am MPI für biophysikalische Chemie.

Ein wichtiges Detail entdeckten die Wissenschaftler im sogenannten aktiven Zentrum des Proteasoms, an dem der zelluläre Müll abgebaut wird und an dem sich auch die Inhibitoren anlagern: Anders als bisher gedacht, entsteht bei der chemischen Reaktion von Inhibitor und Proteasom eine 7-Ring Struktur, die eine zusätzliche sogenannte Methylengruppe enthält – mit weitreichenden Folgen für die Wirksamkeit und den chemischen Mechanismus des Inhibitors, so die Forscher.

„Auch wenn es sich bei der Methylengruppe um nur ein Kohlenstoffatom samt zweier benachbarter Protonen unter mehr als 50000 Atomen im Proteasom handelt, beeinflusst diese ganz wesentlich, wie der Inhibitor chemisch beschaffen sein muss, um das Proteasom optimal zu blockieren“, sagt Thomas Schneider, Gruppenleiter am EMBL. „Das muss man bei der Entwicklung neuer Inhibitoren berücksichtigen und die Suche nach Wirkstoff-Kandidaten entsprechend anpassen“, ergänzt Holger Stark.

Das chemische Verfahren, mit dem sich Inhibitoren entsprechend designen lassen, haben die Forscher bereits zum Patent angemeldet. „Da einer möglichen medizinischen Anwendung immer das Erkennen vorausgeht, sind es solche Details, bei denen jedes Atom zählt, die den Unterschied ausmachen“, wie Bourenkov erklärt.

Großer Aufwand zeigt den kleinen Unterschied

Der Erfolg des Projekts ist das Ergebnis großartiger Teamarbeit, betont Max-Planck-Forscher Chari: „Mehrere Wissenschaftler, alle Experten auf ihrem Gebiet, haben ihr jeweiliges Fachwissen beigetragen und sich perfekt ergänzt.“ So arbeiteten für das Projekt Strukturbiologen, Physiker, Kinetiker und Biochemiker des MPI für biophysikalische Chemie, des EMBL in Hamburg und der Universität Göttingen zusammen und entwickelten verschiedene innovative Verfahren.

Um die Struktur eines Moleküls mithilfe von Röntgenkristallografie zu bestimmen, züchten Wissenschaftler von diesem Molekül Kristalle, die sie dann mit Röntgenlicht bestrahlen. Die Röntgenstrahlen werden am Kristall gebeugt und erzeugen ein charakteristisches Muster, anhand dessen sich schließlich die Struktur des Moleküls bestimmen lässt.

Doch in der Praxis ist dies weit schwieriger als es klingt. Mithilfe der neuen Methoden gelang es Fabian Henneberg und Jil Schrader, Nachwuchswissenschaftler in Starks Abteilung und Erstautoren der jetzt in Science erschienen Arbeit, die Proteasomen äußerst rein herzustellen und daraus hochqualitative Kristalle des Komplexes mit und ohne gebundenem Inhibitor zu züchten.

Neue Wirkstoffe testen

Die besondere Reinheit der Proben und die Qualität der Kristalle waren eine entscheidende Voraussetzung, die räumliche Struktur des Müllverwerters derartig detailliert aufklären zu können. Auch das Verfahren zur Aufreinigung und Kristallisation meldeten die Wissenschaftler bereits zum Patent an. „Die Methode, mit der wir das Proteasom aufreinigen und mit und ohne Inhibitor kristallisieren, ist außerdem einsetzbar, um neue Wirkstoffe auf ihre Eignung als Proteasom-Inhibitoren zu testen – im industriellen Maßstab möglicherweise Hunderte pro Woche“, wirft Chari einen Blick in die Zukunft.

Eine zweite entscheidende Voraussetzung für den Erfolg des Projekts war die Brillianz des Röntgenlichts. Dieses lieferte die EMBL-Forschungsanlage am DESY: „Die DESY-Strahlenquelle generiert Röntgenstrahlen von herausragender Qualität. Mithilfe der Hochleistungs-Röntgenoptiken konnten wir die Röntgenstrahlen für das kristallisierte Proteasom maßschneidern und diese hohe Detailschärfe erreichen“, sagt Bourenkov.

Die in dieser Arbeit verwendeten Hochleistungs-Röntgenoptiken wurden 2015 mit Unterstützung des BMBF im Rahmen des RÅC-Förderprogramms in die P14-Strahlführung eingebaut.

Original-Veröffentlichung
Schrader J, Henneberg F, Mata R, Tittmann K, Schneider TR, Stark H, Bourenkov G, Chari A: The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science, 5. August 2016, doi:10.1126/science.aaf8993

Kontakt
Dr. Ashwin Chari, Abteilung Strukturelle Dynamik,
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1654
E-Mail: ashwin.chari@mpibpc.mpg.de

Dr. Gleb Bourenkov
EMBL Hamburg c/o Deutsches Elektronensynchrotron
Tel.: +49 40 89902-120
E-Mail: gleb@embl-hamburg.de

Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: carmen.rotte@mpibpc.mpg.de

Sonia Furtado Neves, Pressestelle
EMBL Heidelberg
Tel.: +49 6221 387 8263
E-Mail: sonia.furtado@embl.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15429097/pr_1628 - Original-Pressemitteilung
http://www.mpibpc.mpg.de/de/stark – Webseite der Abteilung Strukturelle Dynamik, Max-Planck-Institut für biophysikalische Chemie, Göttingen
http://www.embl-hamburg.de/research/unit/schneider – Webseite der Arbeitsgruppe Tools for Structure Determination and Analysis, EMBL Hamburg c/o Deutsches Elektronensynchrotron

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem
24.05.2019 | Universität Leipzig

nachricht Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken
24.05.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics