Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jacob-Protein beeinflusst räumliche Lernprozesse, aber nicht Kallmann-Syndrom

24.03.2016

Ein menschliches Gehirn besteht aus Milliarden von Nervenzellen, die über Synapsen miteinander kommunizieren. Innerhalb der Synapsen befinden sich über 1000 verschiedene Eiweißbausteine, die Lern- und Gedächtnisprozesse im Gehirn beeinflussen. Einige neurologische Krankheiten und Entwicklungsstörungen gehen auf defekte Synapsenproteine zurück. Eines dieser Proteine heißt Jacob. Dr. Michael Kreutz, Leiter der Forschergruppe Neuroplastizität am Leibniz-Institut für Neurobiologie (LIN), und seine Mitarbeiterin Dr. Christina Spilker haben mit einem Magdeburger Forscherteam in einer neuen Studie die Bedeutung des Jacob-Proteins im Gehirn entschlüsselt und im Fachmagazin PLOS Genetics publiziert.

Das Jacob-Protein spielt in Nervenzellen eine wichtige Rolle als Mittler von Informationen zwischen Synapsen und dem Zellkern. Es wurde Ende der 1990er Jahre von Dr. Michael Kreutz am LIN entdeckt. In der vorliegenden Studie haben Magdeburger Neurowissenschaftler des LIN und der Otto-von-Guericke-Universität im Rahmen des Sonderforschungsbereiches 779 untersucht, ob das Jacob-Protein Lernprozesse beeinflusst und eventuell auch zur Entstehung des seltenen Kallmann-Syndroms beiträgt.


Das Bild zeigt eine drei-dimensionale Darstellung einer Nervenzelle (grün), in der sich phosphorylierte Jacob-Proteine (rot-violett) befinden.

LIN/Anna Karpova

Beim Kallmann-Syndrom handelt es sich um eine Erkrankung, die auf eine Entwicklungsstörung des zentralen Nervensystems zurückzuführen ist. Ursächlich ist eine gestörte Wanderung bestimmter Hormon-produzierender Neurone während der frühen embryonalen Entwicklung in den Hypothalamus, einen Bereich im Vorderhirn.

Erreichen diese Neurone ihren Zielort nicht, kommt es zu den typischen Symptomen: die Pubertät bei den Betroffenen bleibt aus oder verzögert sich; weiterhin ist ihr Geruchssinn gemindert oder gar nicht vorhanden. Seit Langem vermuten Humangenetiker, dass es zwischen Mutationen im Jacob-Gen und dem Kallmann-Syndrom einen Zusammenhang gibt, da einige der Patienten Mutationen im Jacob-Gen aufweisen, obwohl auch die Beteiligung mehrerer anderer Gene bei der Entstehung der genetischen Störung möglich ist.

Das Magdeburger Forscherteam konnte in der neuen Studie an Mäusen zeigen, dass die Entwicklungsstörung nicht durch Jacob hervorgerufen wird. Dr. Christina Spilker berichtet: „Wir haben Knockout-Mäuse getestet, denen das Gen fehlt, welches das Jacob-Protein kodiert. Die Wanderung der Hormon-bildenden GnRH-Neurone in den Hypothalamus war bei den Nagern vollkommen in Ordnung und die typischen Kallmann-Symptome sind nicht aufgetreten. Somit konnten wir zeigen, dass es keinen Zusammenhang zwischen dem Jacob-Gen und dem Kallmann-Syndrom gibt.“

Im weiteren Verlauf der Studie untersuchten die Magdeburger Wissenschaftler, inwiefern das Jacob-Protein Plastizitäts- und Lernprozesse im gesunden Gehirn steuert. Wenn man neue Zusammenhänge lernt oder Fähigkeiten verbessert, werden bestimmte Schaltkreise und deren Synapsen im Gehirn verstärkt genutzt. Die Nervenbahnen verändern sich dadurch und eine Gedächtnisspur entsteht. Diese Umbauprozesse, die durch die Aktivierung neuer Verschaltungen angelegt werden, bezeichnet man als synaptische Plastizität.

Zunächst konnten die Forscher zeigen, dass die Morphologie des Hippokampus, einer Hirnregion, die für Lernprozesse sehr wichtig ist, bei den Jacob-Knockout-Mäusen verändert ist. Die Neuronen im Hippokampus der Mäuse ohne Jacob-Protein haben eine weniger komplexe Anatomie und weniger Synapsen verglichen mit den Nervenzellen normaler Tiere.

Das wirkt sich auch auf die Lernfähigkeit der Tiere aus. In Verhaltensexperimenten haben die Wissenschaftler Lernprozesse im Hippokampus analysiert und festgestellt, dass die Jacob-Knockout-Mäuse ein deutlich schlechteres räumliches Gedächtnis haben, sich also beispielsweise die Position von Objekten im Raum schlechter merken können.

Eine wichtige Rolle bei der Jacob-vermittelten Signalweiterleitung in Neuronen spielt der Hirn-Wachstumsfaktor BDNF. Spilker erklärt: „Wir konnten nachweisen, dass der Gehalt an BDNF in Nervenzellen ohne Jacob während der frühen postnatalen Entwicklung verringert ist. Das wirkt sich auf die Jacob-vermittelte Signaltransduktion aus, sodass es zu den beschriebenen morphologischen Veränderungen und Lerndefiziten kommt. Gibt man BDNF zu Neuronen aus Jacob-Knockout-Mäusen, so können die anatomischen Auffälligkeiten vermindert werden.“

Die Studie ist online verfügbar unter:
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005907

Das Leibniz-Institut für Neurobiologie (LIN) in Magdeburg ist ein Zentrum für Lern- und Gedächtnisforschung.

Weitere Informationen:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005907

Sophie Ehrenberg | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.lin-magdeburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blockierung des Eisentransports könnte Tuberkulose stoppen
01.04.2020 | Universität Zürich

nachricht Universität Innsbruck entwickelt neuartiges Corona-Testverfahren
01.04.2020 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom

01.04.2020 | Medizin Gesundheit

Unternehmenswissen - Wie gelingt der Umstieg von Präsenz auf Online?

01.04.2020 | Seminare Workshops

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics