Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Interne Kopplung der Ohren ermöglicht Tieren das Richtungshören: Ein Tunnel im Kopf

18.02.2016

Menschen nutzen den Zeitunterschied, mit dem ein Schallsignal an beiden Ohren ankommt, zur Richtungsbestimmung. Bei Fröschen, Echsen oder Vögeln ist der Ohrabstand hierfür zu gering. Sie besitzen jedoch einen Verbindungsgang zwischen beiden Trommelfellen, in dem sich innere und äußere Schallwellen überlagern. Mit einem universellen mathematischen Modell zeigen Forscher der Technischen Universität München (TUM) nun erstmals, wie in diesem „inneren Ohr“ neue Signale entstehen, die die Tiere zur Ortung nutzen.

Sei es eine Bedrohung, die sich anschleicht oder eine Beute, die es im Dunkeln zu finden gilt – die genaue Position einer Geräuschquelle bestimmen zu können, ist im Tierreich von großer Bedeutung. Fast alle Säugetiere, darunter auch der Mensch, lokalisieren eine Geräuschquelle horizontal mit Hilfe der zeitlichen Verzögerung mit der das Schallsignal an beiden Ohren ankommt. Aus dem Zeitunterschied berechnet das Gehirn die Richtung, aus der das Geräusch kam.


Ein luftgefüllter Kanal verbindet die Ohren der Eidechse im Inneren und ermöglicht ihr das Richtungshören

Bild: Frieder Mugele, Universität Twente

Frösche, viele Reptilien und auch Vögel haben diese Möglichkeit nicht, da ihr Ohrabstand oft nur wenige Zentimeter beträgt. Der Zeitunterschied ist daher so gering, dass das Gehirn ihn nicht mehr verarbeiten kann. Um diesen Nachteil auszugleichen, haben diese Tiere ein einfaches und zugleich sehr effizientes System entwickelt: Ein luftgefüllter Hohlraum verbindet die Trommelfelle beider Ohren.

Dieser quer durch den Schädel hindurch verlaufende Hohlraum sorgt für eine Kopplung der beiden Trommelfelle. Die Wissenschaftler sprechen hierbei von „intern gekoppelten Ohren“ (englisch „internally coupled ears“, ICE). Dieser „Tunnel im Kopf“ wird gut sichtbar, wenn man beispielsweise einem Gecko in eines seiner Ohren hineinleuchtet: Der Lichtstrahl tritt dann aus dem anderen Ohr wieder aus.

Anders als bei uns Menschen nehmen die Tiere damit nicht nur die von außen auftreffenden Signale wahr, sondern auch eine Überlagerung der äußeren Schallwellen mit jenen, die im Inneren des Verbindungsganges durch die Kopplung mit der anderen Seite entstehen. Zwar haben Wissenschaftler durch Experimente herausgefunden, dass die Tiere dieses resultierende Signal zur Richtungsbestimmung nutzen. Was jedoch in den gekoppelten Ohren genau vor sich geht, blieb bislang ein Rätsel.

Ein Modell für 15.000 Arten

Nun ist es Wissenschaftlern um Leo van Hemmen, Professor für Theoretische Biophysik an der Technischen Universität München (TUM), erstmals gelungen, ein universell anwendbares mathematisches Modell zu entwickeln, das genau beschreibt, wie sich die Schallwellen in intern gekoppelten Ohren ausbreiten und welche Hinweise auf die Richtung des Signals dabei entstehen.

„Unser Modell lässt sich auf alle Tiere mit diesem Hörsystem anwenden, auch wenn die Hohlräume zwischen den Trommelfellen bei den unterschiedlichen Spezies sehr verschieden aussehen“, erklärt van Hemmen. „Hierdurch verstehen wir nun, was genau im Inneren der Ohren dieser Tiere vor sich geht, und können Experimente bei ganz unterschiedlichen Tierarten erklären und vorhersagen.“ Insgesamt besitzen mehr als 15.000 Arten intern gekoppelte Ohren – das ist mehr als die Hälfte aller landlebenden Wirbeltiere.

Zusammenspiel von externen und internen Signalen

Mit Hilfe ihres Modells fanden van Hemmen und sein Team heraus, dass die Tiere sogar zwei verschiedene Methoden zum Hören mit intern gekoppelten Ohren entwickelt haben. Sie treten in unterschiedlichen Frequenzbereichen auf und ergänzen sich gegenseitig.

Bei Tönen mit einer Frequenz unterhalb der Grundfrequenz des Trommelfells wird der Zeitunterschied, der durch die Überlagerung der äußeren und der inneren Signale entsteht, bis zu fünffach verstärkt. Das reicht aus, um das Geräusch orten zu können.

Bei höheren Frequenzen kann die Zeitdifferenz nicht mehr genutzt werden. Hier kommt eine andere Eigenschaft des Signals zum Tragen: Der Unterschied in der Amplitude, also des Lautstärkepegels, mit dem das Signal an beiden Ohren wahrgenommen wird. „Diese Amplitudendifferenz entsteht allein durch die Kopplung der beiden Ohren“, erklärt van Hemmen. „Das war ein überraschendes Ergebnis.“

Die neuen Erkenntnisse über den Mechanismus und vor allem die Vorteile des Hörens mit intern gekoppelten Ohren sind auch für die Industrie interessant. So könnten vielleicht einmal Roboter mit solch einem Hörsystem ausgestattet werden. „Ich kann mir eine Anwendung in der Robotik gut vorstellen, da diese Art der Verstärkung keine Energie kostet“, meint van Hemmen. In Zukunft wollen die Wissenschaftler um van Hemmen ihr Modell zusammen mit experimentell arbeitenden Kollegen weiter verfeinern.

Publikation:

A.P. Vedurmudi, J. Goulet, J. Christensen-Dalsgaard, B.A. Young, R. Williams, and J.L. van Hemmen, How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization, Physical Review Letters, 116, 028101 DOI: 10.1103/PhysRevLett.116.028101

Kontakt:

Prof. Dr. J. L. van Hemmen
Lehrstuhl für Theoretische Biophysik
Physik Department T35
James-Franck-Str. 1, 85748 Garching, Germany
Tel: +49 89 289 12362 – E-Mail: lvh@tum.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.028101

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen
19.02.2020 | Max-Planck-Institut für Ornithologie

nachricht Einblicke in den Ursprung des Lebens: Wie sich die ersten Protozellen teilten
19.02.2020 | Universität Augsburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics