Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovatives Verfahren liefert neuartige Einblicke in den Aufbau von Zellen und Geweben

06.09.2019

Wissenschaftler der Universität Münster untersuchen Zellen mit der Zweistrahl-Laser-Massenspektrometrie: Zellen sind die Grundbausteine des Lebens. Mit Hilfe von massenspektrometrischen Verfahren, kann die chemische Zusammensetzung von Zellen bestimmt werden. Wissenschaftler der WWU gelang es nun ein Verfahren zu entwickeln, durch das die räumliche Auflösung der bildgebenden „MALDI“-Massenspektrometrie auf rund ein tausendstel Millimeter verbessert wurde. Die Ergebnisse sind in „Nature Methods“ erschienen.

Zellen: die Grundbausteine des Lebens – als solche werden sie bereits seit der Erfindung des Lichtmikroskops im 17. Jahrhundert intensiv untersucht. Die Entwicklung von massenspektrometrischen (MS) Verfahren – solchen, die die chemische Zusammensetzung von Zellen bestimmen – war ein weiterer Meilenstein für die zellbiologische Forschung.


Das Funktionsprinzip des bildgebenden t-MALDI-2-MS-Verfahrens (l.) und ein Beispiel, in dem der komplexe Aufbau eines Maushirns anhand der Überlagerung von drei Ionensignalen dargestellt ist (r.)

Nature Research/Marcel Niehaus

In der aktuellen Ausgabe der Fachzeitschrift Nature Methods stellt die Arbeitsgruppe von Prof. Klaus Dreisewerd und Dr. Jens Soltwisch vom Institut für Hygiene der Universität Münster (WWU) nun ein Verfahren vor, durch das die räumliche Auflösung der bildgebenden MALDI-Massenspektrometrie auf rund ein tausendstel Millimeter verbessert wurde.

MALDI steht für Matrix-unterstütze Laserdesorption/Ionisation. Das Besondere an der von den Forschern t-MALDI-2 genannten Technik („t“ für Transmissionsmodus) ist der Einsatz zweier speziell adaptierter Laser, von denen der erste einen besonders kleinen Fokus zum Materialabtrag erzeugt, während der zweite die notwendige Signalsteigerung für viele Biomoleküle um bis zu mehreren Größenordnungen bringt – also zum Beispiel für fettlösliche Vitamine wie Vitamin D, Cholesterin oder auch verabreichten Medikamente. 

Die Information über deren präzise räumliche Verteilung in Zellen und Geweben kann unter anderem zu einem verbesserten Verständnis von Krankheits- und Infektionsprozessen beitragen und neue Behandlungsstrategien aufzeigen.

MALDI-MS-Verfahren bestimmen die Natur und Zusammensetzung von Molekülen anhand ihrer charakteristischen Masse, das heißt, ihrem „molekularen Gewicht“. So lassen sich aus einer mit dem Laser bestrahlten Probe - wie einem dünnen Gewebeschnitt, der aus einer Biopsie gewonnen wurde - oft Dutzende bis Hunderte verschiedener Biomoleküle in einer einzigen Messung gleichzeitig bestimmen.

Allerdings lag die Auflösung der bildgebenden Massenspektrometrie bislang deutlich unter der der klassischen Lichtmikroskopie - durch die Einführung der neuen t-MALDI-2-Technik konnte diese Lücke deutlich verkleinert werden.

„Die entscheidende Verbesserung unserer Methodik gegenüber etablierten bildgebenden MALDI-Verfahren basiert auf der Kombination und der Erweiterung zweier zuvor eingeführter technischer Ansätze“, erläutert Dr. Marcel Niehaus, einer der beiden Erstautoren der Studie.

„Zum einen beschießen wir in der Transmissionsgeometrie unsere Proben rückseitig. Hierdurch wird es möglich, hochwertige Mikroskop-Objektive sehr nah an der Probe zu platzieren und so den Laserpunkt zu verkleinern, anders als dies aus geometrischen Gründen bei Standardverfahren möglich ist, wo die Proben aus der Richtung des Massenanalysators bestrahlt werden.“

Allerdings steht in den winzigen Probenbereichen, die so vom Laser abgetragen werden, nur noch extrem wenig Material für die anschließende MS-Messung zur Verfügung. Der zweite entscheidende Schritt war daher die Nutzung einer Methode (MALDI-2 genannt), welche die Forscher 2015 bereits mit einer Publikation in der „Science“ in die Fachwelt eingeführt hatten.

Im Effekt sorgt der sogenannte Nachionisationslaser für eine verstärkte Überführung der zunächst ungeladenen Moleküle in eine ionische Form – nur, wenn die Moleküle mit einer positiven oder negativen Ladung versehen sind, sind sie für den Massenanalysator auch sichtbar.

In ihrer Studie demonstrieren die Wissenschaftler die Möglichkeiten ihrer Technik anhand der Feinstrukturen im Aufbau des Kleinhirns der Maus und mittels gezüchteter Kulturen von Nierenzellen. „Mit unserem Verfahren könnten künftig die Abläufe vieler Prozesse im Körper auf molekularer Ebene deutlich besser verstanden werden“, freut sich Prof. Dreisewerd.

„Zudem könnten etablierte Verfahren aus der Lichtmikroskopie, zum Beispiel zur Fluoreszenzmikroskopie, mit der bildgebenden Massenspektrometrie an einem ‚multimodalen‘ Instrument fusioniert werden“, blickt der Projektleiter nach vorn.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Klaus Dreisewerd
Leiter der Forschungsabteilung Biomedizinische Massenspektrometrie
Telefon: 0251 83 56726
Mail: dreisew@uni-muenster.de

Originalpublikation:

Niehaus, M. et al. (2019): Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nature Methods; DOI: https://doi.org/10.1038/s41592-019-0536-2

Weitere Informationen:

https://www.nature.com/articles/s41592-019-0536-2 Originalpublikation
https://science.sciencemag.org/content/348/6231/211 Einführung der MALDI-2-Technik (ohne Transmissionsmodus)
https://www.medizin.uni-muenster.de/hygiene/forschung/forschungsgebiete/biomediz... Arbeitsgruppe „Biomedizinische Biomedizinische Massenspektrometrie“

Dr. Thomas Bauer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Toxoplasmose-Erreger: Recyclingmechanismus stellt Vermehrung des Parasits Toxoplasma gondii sicher
13.09.2019 | Ludwig-Maximilians-Universität München

nachricht Schwarzer Hautkrebs: Neue potentielle Biomarker für aggressiveres Tumorverhalten entdeckt
12.09.2019 | Universitätsmedizin Göttingen - Georg-August-Universität

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Künstliche Intelligenz bringt Licht ins Dunkel

Die Vorhersage von durch Licht ausgelösten molekularen Reaktionen ist bis dato extrem rechenaufwendig. Ein Team um Philipp Marquetand von der Fakultät für Chemie der Universitäten Wien hat nun unter Nutzung von künstlichen neuronalen Netzen ein Verfahren vorgestellt, welches die Simulation von photoinduzierten Prozessen drastisch beschleunigt. Das Verfahren bietet neue Möglichkeiten, biologische Prozesse wie erste Schritte der Krebsentstehung oder Alterungsprozesse von Materie besser zu verstehen. Die Studie erschien in der aktuellen Ausgabe der Fachzeitschrift "Chemical Science" und eine zugehörige Illustration auf einem der Cover.

Maschinelles Lernen spielt in der chemischen Forschung eine immer größere Rolle, z.B. bei der Entdeckung und Entwicklung neuer Moleküle und Materialien. In...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

Wie verändert Autonomes Fahren unseren Alltag?

12.09.2019 | Veranstaltungen

Künstliche Intelligenz – Wie können wir Algorithmen vertrauen?

11.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungsnachrichten

Toxoplasmose-Erreger: Recyclingmechanismus stellt Vermehrung des Parasits Toxoplasma gondii sicher

13.09.2019 | Biowissenschaften Chemie

Hoher Wert für die Hubble-Konstante mit Hilfe von Gravitationslinsen

13.09.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics