Inaktive X-Chromosomen kopieren sich schneller

Bei Säugetieren entscheidet das Y-Chromosom über das Geschlecht: Weibchen besitzen zwei X-Chromosomen, Männchen ein X- und ein Y-Chromosom. Auf dem X-Chromosom befinden sich allerdings Gene, die auf dem Y-Chromosom fehlen.

Damit diese Erbinformationen bei Männchen im Vergleich zu Weibchen nicht unterrepräsentiert sind, wird eines der beiden X-Chromosomen in weiblichen Zellen inaktiviert. Die Geninformationen selbst werden dabei nicht verändert und das inaktive Chromosom wie die anderen auch an die Tochterzellen weitervererbt. Es handelt sich dabei also um einen epigenetischen Prozess, der auch rückgängig gemacht werden kann.

Prof. Cristina Cardoso und Corella Casas Delucchi vom Fachbereich Biologie der TU Darmstadt konnten nun erstmals in lebenden Zellen beobachten, dass inaktivierte X-Chromosomen in wesentlich kürzerer Zeit dupliziert werden als aktive Chromosomen. Wie sie in ihrer gestern in „Nature Communications“ erschienenen Veröffentlichung (DOI: 10.1038/ncomms1218) darlegen, dauert die Vervielfältigung eines inaktivierten Chromosoms statt der üblichen zehn bis zwölf Stunden lediglich ein bis zwei Stunden, setzt dafür aber später ein. „Diese schnelle Duplikation wird dadurch erreicht, dass die DNA, der Träger der Erbinformationen, gleichzeitig aktiviert wird und nicht nacheinander wie üblicherweise“, berichtet Cardoso.

„Erstaunlich ist, dass die Duplikation noch inaktiver Erbinformationen in frühen Embryonen von Fliegen und Fröschen auf gleiche Weise funktioniert.“ Es stellt sich also die Frage, ob inaktive Regionen der DNA immer auf gleiche Weise, nämlich synchron, dupliziert werden.

Bei der Inaktivierung, die bei Säugern während der frühen Entwicklung des Embryos stattfindet, spielt das sogenannte Xist-Gen eine zentrale Rolle. Es produziert ein spezifisches Makromolekül (Ribonukleinsäure, RNA), das sich an eines der beiden X-Chromosomen der weiblichen Zelle bindet. Die Folge ist eine Reihe von chemischen Veränderungen der Histone, um die sich die DNA wickelt wie um eine Spule. Dadurch verändert sich wiederum die Dichte der Histone und damit auch die Aktivität der DNA. „Wir wollen nun versuchen, die Histone eines spezifischen Chromosoms auf eben diese Weise zu verändern. Wenn uns dies gelingt, wollen wir zunächst beobachten, ob dies Auswirkungen auf die Duplikationszeit hat und in einem zweiten Schritt, ob dies die Genexpression dieses Chromosoms verändert“, blickt Cardoso in die Zukunft. Wäre dem so, wäre künftig denkbar, die Wirkung von Pharmazeutika daraufhin zu analysieren, ob sie generell auf alle Chromosomen oder nur auf einige dieser DNA-Träger wirken. Womöglich könnten eines Tages sogar bestimmte krankheitsrelevante Gene inaktiviert beziehungsweise reaktiviert werden.

Pressekontakt
Corella Casas Delucchi
Tel. 06151/16-5074
casas@bio.tu-darmstadt.de
MI-Nr. 15/2011, Kneifel/csi

Media Contact

Jörg Feuck idw

Weitere Informationen:

http://www.tu-darmstadt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer