Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Hochleistungs-Mais sind mehr Gene aktiv

19.01.2018

Wenn zwei Mais-Inzuchtlinien miteinander gekreuzt werden, stellt sich regelmäßig ein interessanter Effekt ein: Die Nachkommen sind deutlich ertragsstärker als jede der beiden Elternpflanzen. Wissenschaftler der Universität Bonn haben nun eine Reihe unterschiedlicher Kreuzungen untersucht. Dabei zeigte sich, dass in den Nachkommen stets sehr viel mehr Gene aktiv waren als in den Ausgangs-Pflanzen. Die Ergebnisse können eventuell zur Züchtung noch ertragreicherer Maissorten beitragen. Sie erscheinen in der Fachzeitschrift „Current Biology“.

Dass sich die Kreuzung unterschiedlicher Inzuchtlinien positiv auf den Ertrag auswirkt, wissen Züchter schon lange. Über die Ursachen dieses so genannten „Heterosis-Effekts“ herrscht aber bislang weitgehend Unklarheit.


Erforschen die Gene von Maispflanzen: Prof. Dr. Frank Hochholdinger und Jutta Baldauf vom Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) der Universität Bonn im Gewächshaus.

© Foto: Barbara Frommann/Uni Bonn

„Wir haben uns daher vor einigen Jahren eine bestimmte Kreuzung genauer angesehen“, erklärt Prof. Dr. Frank Hochholdinger vom Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) der Universität Bonn. „Dabei konnten wir zeigen, dass bei den Nachkommen mehr Gene aktiv waren. Wir wussten aber damals nicht, ob das nur für diese spezifische Kombination von Elternpflanzen zutraf oder ob es sich um einen generellen Mechanismus handelt.“

In der vorliegenden Studie haben die Wissenschaftler daher nicht nur eine, sondern sechs verschiedene Kreuzungen unter die Lupe genommen. Bei den Elternpflanzen handelte es sich um Inzuchtlinien, die miteinander nur sehr weitläufig verwandt waren. Zudem waren sie gleichmäßig über den gesamten Mais-Stammbaum verteilt – das ist ungefähr so, als würde man einen Dackel einmal mit einem Schäferhund, dann mit einem Mops und schließlich mit einem Labrador verpaaren.

„Wir haben nun analysiert, welche Gene in den Ausgangspflanzen und welche in den Nachkommen abgelesen wurden“, erklärt Jutta Baldauf vom INRES. „Dabei bestätigte sich der Befund aus unseren früheren Arbeiten: In den durch die Kreuzungen entstandenen Hybriden waren stets weitaus mehr Erbanlagen aktiv als in ihren Eltern.“

Komplementation macht Mais ertragreicher

In Maispflanzen gibt es von jedem Gen zwei Varianten – Experten sprechen auch von Allelen. Eines dieser Allele stammt von dem weiblichen, das andere von dem männlichen Elternteil. Oft sind sie nicht gleich aktiv, sondern die eine Variante wird häufiger abgelesen als die andere. Manche Allele können sogar ganz abgeschaltet sein.

Da Inzuchtlinien zu ihrer Vermehrung über viele Generationen mit sich selbst gekreuzt werden, sind die Allele jedes ihrer Gene meist identisch. Das kann dazu führen, dass bestimmte Gene gar nicht abgelesen werden. Bei einer anderen Inzuchtlinie können diese Gene dagegen aktiv sein. Wenn man nun diese Elternlinien miteinander kreuzt, ergänzen sich in den Nachkommen die unterschiedlichen Allele beider Elternteile. Die inaktiven Gene im Genom der einen Linie werden also durch aktive Gene aus der anderen Linie aufgefüllt. Genetiker nennen das Komplementation.

„Im Schnitt zählen wir bei den Nachkommen daher mehr aktive Gene“, erklärt Baldauf. Und zwar deutlich mehr: Auf 500 bis 600 Erbanlagen beziffern die Wissenschaftler den genetischen Zugewinn im Schnitt. Insgesamt umfasst das Mais-Erbgut rund 40.000 Gene. „Die Komplementation der SPE-Gene – das Kürzel steht für „Single Parent Expression“, also 'Ausprägung nur bei einem Elternteil' – könnte neben anderen Faktoren dazu beitragen, dass Hybride leistungsfähiger als ihre Eltern sind“, sagt Prof. Hochholdinger.

Mais verfügt über zahlreiche Gene, die sich seit vielen Millionen Jahren praktisch unverändert erhalten haben. Diese „alten“ Gene sind für die Pflanze so wichtig, dass Mutationen in ihnen dramatische Auswirkungen haben können. Die SPE-Gene sind dagegen meist erst später im Laufe der Evolution entstanden. Sie übernehmen keine lebenswichtige Schlüsselfunktion; daher können sie auch in einer Maislinie aktiv sein, in der anderen dagegen nicht. Viele von ihnen gehören zu bestimmten Gruppen so genannter Transkriptions-Faktoren. Das sind Proteine, die ihrerseits die Aktivität anderer Gene beeinflussen.

Die Ergebnisse könnten mittelfristig die Züchtung leistungsfähigerer Maissorten erleichtern. „Mit den SPEs geben wir Pflanzenzüchtern dazu genetische Marker an die Hand“, betont Hochholdinger. „Auf Basis dieser Marker lassen sich eventuell gezielt Kreuzungspartner wählen, die besonders ertragreiche Hybride erwarten lassen.“ Diese sind für die langfristige Ernährung der steigenden Weltbevölkerung immens wichtig: Experten rechnen damit, dass die landwirtschaftlichen Erträge bis 2050 um 70 Prozent werden steigen müssen. Mais ist schon heute die ertragreichste Kulturpflanze; er spielt daher für die Ernährung eine besonders wichtige Rolle.

Publikation: Jutta A. Baldauf, Caroline Marcon, Andrew Lithio, Lucia Vedder, Lena Altrogge, Hans-Peter Piepho, Heiko Schoof, Dan Nettleton und Frank Hochholdinger: Single parent expression is a general mechanism that drives extensive complementation of non-syntenic genes in maize (Zea mays L.) hybrids; Current Biology, Band 28, 2018; DOI: 10.1016/j.cub.2017.12.027

Kontakt:

Prof. Dr. Frank Hochholdinger
INRES – Crop Functional Genomics
Universität Bonn
Tel. 0228/73-60334 oder -60331
E-Mail: hochhold@uni-bonn.de

Jutta Baldauf
INRES – Crop Functional Genomics
Universität Bonn
Tel. 0228/73-54205
E-Mail: baldauf@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics