Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hepatitis C-Viren in Leberzellen ausschalten – ohne Kollateralschaden

06.11.2015

Versuchen Forscher chronischen Infektionen mittels Gentherapie beizukommen, kann das gleichzeitig unerwünschte Auswirkungen auf das infizierte Gewebe haben. Virologen am Universitätsklinikum Heidelberg haben eine Strategie entwickelt, die solche Nebenwirkungen auf ein Minimum reduziert.

Wissenschaftler des Zentrums für Infektiologie am Universitätsklinikum Heidelberg haben eine bisher noch experimentelle Variante der sogenannten Gentherapie bei chronischen Virusinfektionen entscheidend verbessert. Mit Hilfe der weiterentwickelten Technik ließ sich in Zellversuchen beispielhaft eine chronische Infektion mit Hepatitis C-Viren stark zurückdrängen.

Gleichzeitig waren Nebeneffekte dieser als RNA-Interferenz bezeichneten Methode auf ein Minimum reduziert. Bis die Heidelberger Erfindung Patienten zugutekommt, ist es zwar noch ein langer Weg. Bis dahin könnte sie aber der medizinischen und biologischen Grundlagenforschung großen Nutzen bringen.

Dort kommt die RNA-Interferenz häufig zum Einsatz, um die Funktion bestimmter Gene (Abschnitte der Erbinformation) im lebenden Organismus zu untersuchen. Ihr Vorgehen hat die Arbeitsgruppe von Dr. Dirk Grimm, Exzellenzcluster CellNetworks und Zentrum für Infektiologie (Direktor: Professor Dr. Hans-Georg Kräusslich), im renommierten Fachjournal „Proceedings of the National Academy of Sciences USA“ (PNAS) veröffentlicht.

Die RNA-Interferenz (RNAi) ist ein natürlicher Mechanismus in menschlichen, tierischen und pflanzlichen Zellen, um die Funktion einzelner Gene zu regulieren. Dazu werden Botenmoleküle (engl. "messenger ribonucleic acid", kurz mRNA), die Informationen dieser Gene übertragen, gezielt abgefangen. Sie bleiben an einer Art Köder kleben, der aus kleinen RNA-Stücken besteht.

Das kann dazu führen, dass die mRNAs entweder deutlich weniger aktiv sind oder sogar komplett abgebaut werden. Die Nachricht kommt somit nicht durch, das Gen kann seine Wirkung nicht oder nur eingeschränkt entfalten. Die RNA-Interferenz dient der Feinregulation des zellulären Stoffwechsels. Man kann sich diesen Mechanismus aber auch effektiv zu Nutze machen, um eingedrungene Viren zu blockieren und zu zerstören. Das funktioniert am besten mit Viren, deren Erbinformation in Form von RNA gespeichert wird, was beispielsweise beim Hepatitis C-Virus der Fall ist.

Stabilisierendes Element unverzichtbar, aber unberechenbarer Störfaktor

Hierzu bedienen sich die Wissenschaftler der Gentherapie: Sie stellen den genetischen Bauplan für den RNA-Köder künstlich her und verpacken ihn in veränderte Viren (sogenannte "Vektoren"), die selbst keinen Schaden verursachen. Diese transportieren ihn in die befallenen Leberzellen. Da der künstliche Bauplan der Erbinformation der Zelle gleicht und von dieser wie ein Stück des eigenen Erbguts behandelt wird, können die Zellen den passenden Köder nun selbst bilden. Damit werden diese Zellen in die Lage versetzt, eingedrungene fremde Gene – wie zum Beispiel die des Hepatitis C-Virus – zu erkennen und lahm zu legen.

Allerdings ergab sich bisher ein Problem: Der RNA-Köder (die sogenannte "short hairpin RNA" oder "shRNA") besteht aus zwei fest miteinander verschlungenen RNA-Strängen, von denen nur der eine therapeutisch wirksam ist. Der andere Strang ist als stabilisierendes Element zwar unverzichtbar, führt aber ein Eigenleben, wie die beiden Erstautoren der Studie, Stefan Mockenhaupt und Stefanie Grosse aus der Arbeitsgruppe von Dr. Grimm, nun zusammen mit Wissenschaftlern um Professor Dr. Ralf Bartenschlager, Leiter der Abteilungen Molekulare Virologie am Zentrum für Infektiologie und Virus-assoziierte Karzinogenese am Deutschen Krebsforschungszentrum, zeigten. Dieser „Helfer“-Strang bindet auf bisher unverstandene Weise andere mRNA-Botenmoleküle und stört damit diverse Zellfunktionen. Diese unbeabsichtigte Wirkung könnte den Therapieerfolg gefährden und Zell- oder Gewebeschäden verursachen.

Lösung: Hemmstoff gleich mit verpacken

„Dieses Problem haben wir nun im Experiment beispielhaft für die Behandlung einer chronischen Virus-Hepatitis C gelöst“, sagt Seniorautor und Arbeitsgruppenleiter Dr. Dirk Grimm. Das Team bepackte die therapeutischen Vektoren mit dem Bauplan für ein weiteres kleines RNA-Molekül. Dieses blockiert zum einen die unerwünschte Aktivität des Helfer-Stranges und zieht außerdem eine weitere RNA ("miRNA 122") der Zelle aus dem Verkehr, die das Hepatitis C-Virus für seine Vermehrung benötigt.

Mit diesem Ansatz gelang es, die Virusvermehrung in einer menschlichen Leberzelllinie ca. 100-fach zu hemmen, ohne merkbare Schädigung. Nun gilt es, die Langzeitwirkung dieser experimentellen Therapie im Tierversuch zu prüfen. „Diese neue Methode ist ein Durchbruch im Bereich der RNA-Interferenz. Da sie flexibel und relativ einfach einsetzbar ist, gehen wir davon aus, dass sie für eine Vielzahl zukünftiger Anwendungen in Forschung und Therapie interessant sein dürfte“, so Grimm. So könnten z.B. noch gezielter als bisher Gene in Krebszellen blockiert und damit Tumoren bekämpft werden.

Literatur:
Mockenhaupt S, Grosse S, Rupp D, Bartenschlager R, Grimm D. 2015. Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys. Proc Natl Acad Sci U S A 28;112(30):E4007-16. doi: 10.1073/pnas.1510476112. Epub 2015 Jul 13.

Kontakt:
Dr. Dirk Grimm
Leiter der Nachwuchsgruppe „Virus-Host Interactions”
Cluster of Excellence CellNetworks
Zentrum für Infektiologie, Abteilung Virologie (Direktor: Prof. Dr. Hans-Georg Kräusslich)
Universitätsklinikum Heidelberg
Im Neuenheimer Feld 267
69120 Heidelberg
Tel.: 06221 54 51339
E-Mail: dirk.grimm@bioquant.uni-heidelberg.de

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg. www.klinikum.uni-heidelberg.de

Weitere Informationen:

http://www.klinikum.uni-heidelberg.de/Virologie.4722.0.html Abteilung Virologie, Zentrum für Infektiologie
http://www.bioquant.uni-heidelberg.de/research/groups/cellnetworks-research-grou... Nachwuchsgruppe Virus-Host Interactions

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics