Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gleichgewicht finden: Mechanismus zur Kontrolle von Autoimmunität entdeckt

08.10.2019

Das Immunsystem setzt auf B-Zellen und ihre Fähigkeit, Antikörper gegen ein extrem breites Spektrum von Krankheitserregern zu bilden. Diese breite Reaktionsfähigkeit birgt ein gewisses Risiko, da sich B-Zellen auch gegen gesundes Gewebe wenden können - ein Phänomen, das als Autoimmunität bezeichnet wird. Wissenschaftler aus dem Labor von Meinrad Busslinger berichteten nun in der Zeitschrift "Nature Immunology", wie das Protein Ikaros das feine Gleichgewicht zwischen B-Zell-Ruhigstellung und Aktivierung steuert und damit die Autoimmunität kontrolliert.

B-Zellen sind weiße Blutkörperchen, die Antikörper gegen eine fast unbegrenzte Anzahl von Krankheitserregern bilden, eine Fähigkeit, die für jeden höheren Organismus lebenswichtig ist.


Querschnitt durch die Milz einer 10 Wochen alten Maus. Immunfluoreszenzfärbung.

IMP / W. Masselink

Der Aufbau eines vielfältigen Repertoires der Pathogenerkennung hat jedoch seinen Preis, da immer einige B-Zellen rabiat werden und sich gegen das eigene, gesunde Gewebe des Organismus richten.

Solche autoreaktiven B-Zellen müssen ruhiggestellt werden und für Notfälle bereit stehen, wie etwa schwere Infektionen mit Krankheitserregern, für die keine spezifische B-Zelle im aktiven B-Zellpool enthalten ist. Wissenschaftler aus dem Labor von Meinrad Busslinger am Forschungsinstitut für Molekulare Pathologie (IMP) haben die beiden antagonistischen Mechanismen untersucht, die autoreaktive B-Zellen stilllegen oder erwecken.

Beide Mechanismen werden durch das Protein Ikaros gesteuert und kontrollieren damit die Autoimmunität - wie die Forscher nun in der Zeitschrift Nature Immunology berichten.

Bemerkenswert ist, dass der Ausgangspunkt des Projekts gar nicht das Thema Autoimmunität war, sondern die Frage, wie der Transkriptionsfaktor Ikaros die Differenzierung von B-Zellen beeinflussen kann.

Transkriptionsfaktoren sind Proteine, die an bestimmte Teile der DNA binden, um Gene spezifisch zu aktivieren oder zu unterdrücken. "Wenn einen interessiert, wie ein Transkriptionsfaktor funktioniert, sieht man sich in der Regel erst an, was er in der frühen oder späten B-Zell-Entwicklung tut. Das geht, indem man den Faktor selektiv deaktiviert", erläutert Meinrad Busslinger den gewählten Ansatz.

In reifen B-Zellen von Mäusen beobachteten die Wissenschaftler in Abwesenheit von Ikaros ein hohes Maß an Autoimmunität. Deshalb wandten sie sich den beiden Mechanismen zu, welche die B-Zellen ein- und ausschalten: "Anergy" des B-Zell-Antigen-Rezeptors (BCR) ist ein Toleranzmechanismus, der autoreaktive B-Zellen unempfindlich gegenüber Selbstantigenen macht, und die Signalwirkung des "Toll-ähnlichen Rezeptors (TLR)" aktiviert B-Zellen.

"Wir konnten zeigen, dass in Abwesenheit von Ikaros BCR-Anergy abnimmt, die TLR-Signalisierung zunimmt und B-Zellen hyperaktiv werden. Das führte in den betroffenen Mäusen zu einer systemischen Autoimmunität", sagt Tanja Schwickert, Erstautorin der Studie, die weiter untersuchte, wie Ikaros die beiden Mechanismen, die diese Signalstörungen verursachen, gezielt steuert. Die Resultate unterstützten das Hauptergebnis der Studie: "Ikaros fungiert als zentraler Schalter, der Autoimmunität verhindert."

Das Forschungsprojekt begann mit der Entwicklung eines Mausmodells zur Untersuchung der Funktion von Ikaros in reifen B-Zellen im Jahr 2012. "An dieser Stelle konnte noch niemand ahnen, dass wir Ikaros als einen grundlegenden Regulator der Autoimmunität identifizieren werden", sagt Meinrad Busslinger. Er betrachtet die Entdeckung dieser Verbindung nun als Glücksfall: "So funktioniert die Grundlagenforschung -wir stellen eine grundlegende Frage und erarbeiten Mechanismen mit unerwarteten, aber sehr weitreichenden Auswirkungen auf alle Arten von Phänomenen". In diesem Fall wurden zwei Mechanismen entdeckt, durch die ein einziges Protein ausreicht, um die Autoimmunität zu kontrollieren.

Beim Menschen wurden Ikaros-Mutationen als Risikofaktor für den systemischen Lupus erythematodes (SLE) identifiziert, eine Autoimmunerkrankung, die nicht heilbar ist und die Lebenserwartung der betroffenen Patienten drastisch verkürzt. Die vorliegende Studie wird dazu beitragen, diese Erkrankung in den Kontext eines grundlegenden Mechanismus zu stellen, der an der Entstehung von Autoimmunerkrankungen beteiligt sein könnte.

Wissenschaftliche Ansprechpartner:

meinrad.busslinger@imp.ac.at

Originalpublikation:

Tanja A. Schwickert, Hiromi Tagoh, Karina Schindler, Maria Fischer, Markus Jaritz and
Meinrad Busslinger. Ikaros prevents autoimmunity by controlling anergy and Toll-like receptor signaling in B cells. Nature Immunology, doi:10.1038/s41590-019-0490-2.

Weitere Informationen:

https://www.nature.com/articles/s41590-019-0490-2
https://www.imp.ac.at/news/

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Operativer Herzklappenersatz: Maßgeschneiderte Aortenklappe aus eigenem Herzgewebe
13.07.2020 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Janggu macht Deep Learning zum Kinderspiel
13.07.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Schlankheitstipps für Computerchips

13.07.2020 | Energie und Elektrotechnik

Gründerteam „Evolime“ erreicht Meilenstein: Speichenräder automatisch und flexibel aus Verbundwerkstoffen herstellen

13.07.2020 | Materialwissenschaften

Operativer Herzklappenersatz: Maßgeschneiderte Aortenklappe aus eigenem Herzgewebe

13.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics