Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genschalter bei der Arbeit beobachtet - Transkriptionsfaktor SRF "live" in Zellen untersucht

23.01.2019

Ein Lichtschalter hat zwei Zustände, er ist entweder an oder aus. Bei einem Genschalter ist die Sache etwas komplizierter. Wie komplex und dynamisch das Zusammenspiel zwischen DNA und Genregulatoren ist, haben Ulmer Forscherinnen und Forscher am Beispiel des Transkriptionsfaktors SRF untersucht, und zwar „live“ auf Einzelzellebene. Das Ergebnis: eine wesentliche Rolle bei der Steuerung der genetischen Aktivität spielen Bindungsstelle und Bindungsdauer, über die der untersuchte Transkriptionsfaktor mit der DNA interagiert. Veröffentlicht wurde die Studie in der angesehenen Fachzeitschrift PNAS.

Transkriptionsfaktoren sind Genregulatoren, die mit der sogenannten Transkription einen biologischen Grundprozess in Gang bringen. Dabei wird der genetische Code der DNA ausgelesen und als Vorversion eines Bauplanes für die spätere Synthese von Biomolekülen bereitgestellt. Die Genregulatoren steuern also die genetische Aktivität.


Lichtblattmikroskopische Aufnahme: SRF Moleküle interagieren nur kurz (grün) oder für längere Zeit (rot) mit der DNA

Aufnahme: Lisa Hipp


Lisa Hipp am Lichtblattmikroskop

Foto: Elvira Eberhardt / Uni Ulm

„Für unsere Untersuchungen haben wir uns den Transkriptionsfaktor SRF ausgesucht, der unter anderem eine Schlüsselrolle bei der Embryonalentwicklung spielt und auch im ausgewachsenen Organismus, vor allem im Gehirn, eine Vielzahl von Genen reguliert“, erklärt Professor Bernd Knöll vom Institut für Physiologische Chemie der Universität Ulm.

„Bisher war bereits bekannt, dass SRF in seiner aktivierten Form bis zu 1000 Gene in einer Zelle anschaltet. Stimuliert wird er dazu von bestimmten Wirkstoffen, beispielsweise durch Wachstumsfaktoren“, erläutert Lisa Hipp, Doktorandin am Institut für Physiologische Chemie und Erstautorin der Studie.

Die Ulmer Wissenschaftlerinnen und Wissenschaftler konnten nun erstmals zeigen, dass die Genaktivierung vom Bindungsverhalten einzelner SRF-Moleküle abhängt, das sich nach der Zellstimulation massiv verändert: die Genregulatoren binden dann länger an die DNA, und die Anzahl der längergebundenen SRF-Moleküle nimmt ebenfalls zu.

Entscheidend dabei sind nicht nur die Bindungsstellen, also die DNA-Abschnitte, an denen der untersuchte Genregulator andockt, sondern auch die Aktivität von SRF-Partnerproteinen (wie dem Kofaktor MRTF) beeinflusst das Bindungsverhalten des Transkriptionsfaktors SRF.

Um diese Prozesse auf Einzelzellebene sichtbar zu machen, haben die Forscher auf eine besondere Mikroskopietechnik zurückgegriffen, die Untersuchungen in lebenden Zellen mit molekularer Auflösung erlaubt: die sogenannte Lichtblattmikroskopie.

Unterstützt wurden sie dabei von den Ulmer Biophysikprofessoren Christof Gebhardt und Jens Michaelis aus dem Institut für Biophysik, die dieses besondere fluoreszenzmikroskopische Bildgebungsverfahren weiterentwickelt haben.

Bei diesem „Single Molecule Tracking“-Verfahren können speziell markierte Biomoleküle und deren Bewegungen in lebenden Zellen sichtbar gemacht werden. Um die Bindungsaktivitäten über die Zeit zu verfolgen, wurden die SRF-Moleküle mit einem photostabilen fluoreszierenden Biofarbstoff markiert. Die hohe Sensitivität bei der Aufnahme kommt zustande, weil nur eine dünne Schicht der Probe beleuchtet wird. Außerdem ist das Verfahren so schonend, dass die Biomoleküle keinen Schaden nehmen.

„Unsere gemeinsame Studie hat grundlegende Erkenntnisse zur Aktivität von Transkriptionsfaktoren und zur Genregulierung zutage gebracht. Diese helfen dabei, die komplexe und hochdynamische Interaktion zwischen Genschaltern und der DNA besser zu verstehen“, so das Ulmer Forscherteam.

„Solche komplexen Prozesse lassen sich mittlerweile nur durch fachübergreifende und transdisziplinäre Zusammenarbeit entschlüsseln, bei der Forscherinnen und Forscher mit unterschiedlichen Expertisen zusammenarbeiten. In unserem Fall waren dies Zellbiologen und Biophysiker“, betonen die Autoren der Studie.

Gefördert wurde das Projekt über die Internationale Graduierten Schule für Molekulare Medizin (IGradU) der Universität Ulm mit einem Promotionsstipendium.

Text und Medienkontakt: Andrea Weber-Tuckermann

Wissenschaftliche Ansprechpartner:

Weitere Informationen:
Prof. Dr. Bernd Knöll, Institut für Physiologische Chemie, Tel.: 0731 / 500 – 23271, E-Mail: bernd.knoell@uni-ulm.de;
Prof. Dr. Jens Michaelis, Institut für Biophysik, Tel.: 0731 / 50 – 23050, E-Mail: jens.michaelis@uni-ulm.de;

Originalpublikation:

Literaturhinweis:
Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. Hipp L, Beer J, Kuchler O, Reisser M, Sinske D, Michaelis J, Gebhardt JCM, Knöll B.; in: Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):880-889.
doi: 10.1073/pnas.1812734116. Epub 2018 Dec 31.

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen
16.10.2019 | Max-Planck-Institut für Neurobiologie

nachricht Blasentang zeigt gekoppelte Reaktionen auf Umweltveränderungen
15.10.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungsnachrichten

Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

16.10.2019 | Messenachrichten

Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

16.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics