Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gennetzwerk verrät, wie Kalorien verbrennende Fettzellen entstehen

09.01.2020

1,9 Milliarden Menschen auf der Welt sind übergewichtig. Davon haben 650 Millionen Menschen Adipositas. Das Risiko von Folgeerkrankungen wie Diabetes Typ 2, Bluthochdruck oder Krebs steigt dadurch. Das Team um Professor Martin Klingenspor an der Technischen Universität München (TUM) erforscht, welchen Einfluss der Fettstoffwechsel auf unsere Gesundheit hat. Zusammen mit Systembiologen der Forschungsgruppe von Professor Bart Deplancke an der École Polytechnique Fédérale de Lausanne (EPFL) kam es nun einem ganzen Netzwerk von Genen auf die Spur, das Energie speicherndes Fett in Energie verbrennendes Fett umwandeln könnte.

Unsere Fettzellen, so genannte Adipocyten, spielen eine zentrale Rolle in der Regulation des Energiehaushalts. „Adipocyten sind nicht nur Energiespeicher für knappe Zeiten, sondern geben auch Hormone ins Blut ab, die über das Gehirn und andere Organe den Stoffwechsel und das Gefühl für Hunger und Sättigung regulieren“, so Klingenspor, Lehrstuhlinhaber für Molekulare Ernährungsmedizin am Else Kröner-Fresenius-Zentrum der TUM.


Professor Dr. Martin Klingenspor

Magdalena Jooss /TUM

Weiß, Beige oder Braun – die Farben der Fettzellen beeinflussen die Gesundheit

Es gibt unterschiedliche Arten von Fettgewebe im Körper, die sich in ihrer Farbe unterscheiden. Weiße Fettzellen dienen vorrangig als Energiespeicher. Braune und beige Fettzellen können Nahrungsenergie in Wärme umwandeln. Dieser Vorgang wird als zitterfreie Thermogenese bezeichnet und dient kleinen Säugetieren und menschlichen Neugeborenen zur Aufrechterhaltung der Körpertemperatur.

Das Auftreten und die Aktivität der braunen und beigen Fettzellen unterscheidet sich zwischen den Individuen. Für Menschen mit vielen dieser thermogenen Fettzellen gibt es Hinweise auf ein geringeres Risiko für Übergewicht und Stoffwechselkrankheiten. Insbesondere die Bildung von beigen Fettzellen im weißen Fettgewebe könnte sich positiv auf die Gesundheit auswirken.

Bräunungsfähigkeit von weißem Fett ist genetisch bedingt

„Wir wollen verstehen, wie sich thermogene Fettzellen entwickeln, also wie beige Fettzellen in weißem Fettgewebe entstehen“, so Klingenspor. Mit dem „Bräunen“ des weißen Fettgewebes könnte ein Energie-speicherndes Organ zum Teil in ein Energie-abgebendes Organ umgewandelt werden und so die Stoffwechselgesundheit fördern.

Die Entwicklung beiger Fettzellen wird durch ein bisher kaum verstandenes genetisches Programm gesteuert. Welche Gene die Unterschiede in der Zelldifferenzierung, also der Entwicklung von beigen Fettzellen, erklären könnten, fand Klingenspors Gruppe bei einer systematischen Musterung von Fettzellen genetisch unterschiedlicher Mausstämme heraus. Dabei wurden solche Stämme ausgewählt, die sich in ihrer Fähigkeit das weiße Fettgewebe zu bräunen unterscheiden.

Neue Möglichkeiten dank Transkriptom und Netzwerk Analysen

Durch Sequenzierung aller Transkripte in einer Zelle mit der Next Generation Sequencing Technologie kann genomweit die Aktivität aller Gene auf einen Schlag erfasst werden. In der aktuellen Studie hat das Team der TUM und der EPFL die Transkriptome der Fettzellen aus den verschiedenen Mausstämmen vergleichend analysiert. Die Studie geht über andere Arbeiten in diesem Feld hinaus, weil sie nicht nur einzelne wichtige Faktoren identifiziert, sondern sie in einem systematischen Netzwerk auch zueinander in Verbindung setzt.

Damit konnte das Team erstmals einen systematischen Überblick über das Netzwerk der Zell-intrinsischen, regulatorischen Mechanismen geben, die der Entwicklung beiger Fettzellen zu Grunde liegen. „Nun haben wir einzigartige Einblicke in die genetische Architektur der Entstehung beiger Fettzellen“, so Klingenspor. „Was wir hier in einer Zellkultur nachweisen konnten, soll in einem nächsten Schritt ‚in vivo‘, also in lebenden Organismen, überprüft werden“, gibt Klingenspor einen Ausblick.

Mehr Informationen:


• Der Lehrstuhl von Professor Klingenspor ist Mitglied des Else Kröner-Fresenius-Zentrums für Ernährungsmedizin (EKFZ). Das EKFZ wurde im Jahr 2005 an der TUM eingerichtet: Der innovative Ansatz verbindet die klassische Ernährungswissenschaft mit der medizinischen Forschung auf breiter Front – bislang einzigartig in der Forschungslandschaft Europas. Das Zentrum besteht aus drei Lehrstühlen mit insgesamt rund 60 Mitarbeitern in zwei Fakultäten (Medizin, Wissenschaftszentrum Weihenstephan). (https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/34829/)

• Die Arbeit ist in der Gruppe von Dr. Yongguo Li entstanden (http://mem.wzw.tum.de/index.php?id=26) - in Kollaboration mit Dr. Petra Schwalie, die in der Gruppe von Professor Bart Deplancke an der École Polytechnique Fédérale de Lausanne (EPFL) forscht. Mit der EPFL in Lausanne verbindet die TUM die gemeinsame Initiative „Eurotech“. (https://www.international.tum.de/internationale-allianzen/eurotech/)

Wissenschaftliche Ansprechpartner:

Prof. Dr. Martin Klingenspor
Technische Universität München
Else Kröner-Fresenius-Zentrum für Ernährungsmedizin
Lehrstuhl für Molekulare Ernährungsmedizin
Tel.: +49 (0) 8161 71 2386
mk@tum.de
http://mem.wzw.tum.de/

Originalpublikation:

Li, Y., Schwalie, P. C., Bast-Habersbrunner, A., Mocek, S., Russeil, J., Fromme, T., Deplancke, B. & M. Klingenspor: Systems genetics-based inference of a core regulatory network unterlying white fat browning. Cell Reports 2019;29:4099–4113

Weitere Informationen:

https://doi.org/10.1016/j.celrep.2019.11.053 (Digital Object Identifier (DOI))


https://mediatum.ub.tum.de/1524726 (hochauflösende Bilder für die Berichterstattung)

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Corona-Forschung an BESSY II: Zwei Tage Messbetrieb für die Suche nach dem richtigen Schlüssel
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Mehr Vielfalt: Öko-Landwirtschaft bietet Heimat für 60% mehr Schmetterlingsarten
02.04.2020 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenimaging: Unsichtbares sichtbar machen

02.04.2020 | Physik Astronomie

Innovative Materialien und Bauelemente für die Terahertz-Elektronik

02.04.2020 | Materialwissenschaften

Besser gewappnet bei Überflutungen in der Stadt

02.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics