Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genetische Basis für die Blütchenfruchtbarkeit des Weizens entschlüsselt

22.02.2019

Zweifelsohne ist ein hoher Kornertrag eine anstrebenswerte Eigenschaft in Getreidearten. Blütchenfruchtbarkeit ist ein entscheidender Faktor, welcher die Anzahl der Körner pro Blütenstand in Getreiden mitbestimmt. Dennoch war bis vor Kurzem wenig über die genetischen Grundlagen von Blütchenfruchtbarkeit bekannt. Bei der Untersuchung dieses Faktors hat eine Gruppe von Wissenschaftlern aus Japan, Deutschland und Israel nun in Weizen den Locus Grain Number Increase 1 (GNI1) entdeckt, welcher einen beachtlichen Einfluss auf die Blütenfruchtbarkeit hat.

Obwohl das am Locus befindliche GNI-A1 Gen zu einem niedrigeren Kornertrag führt, zeigten die Forscher, dass dessen Mutation, ein Allel mit eingeschränkter Funktion, eine erhöhte Anzahl fruchtbarer Blütchen und einen gesteigerten Kornertrag zur Folge hat. Aufgrund dieses positiven Effekts wurde diese mutierte Genvariante im Laufe der Weizendomestikation selektiert und ist heutzutage in vielen Weizensorten mit hohem Kornertrag zu finden.


Ährchenmorphologie der Brot Weizen-Sorte Bobwhite und eines transgenen Derivats, das ein GNl1-RNAi­Konstrukt enthält.

Kazuhiko Sugimoto, Taiichi Ogawa

Der Tribus der Triticeae umfasst mehrere wichtige Getreidearten, so zum Beispiel den Weizen (Triticum aestivum L.) und die Gerste (Hordeum vulgare L.). Eine der wichtigsten Folgen des Domestikationsprozesses ausgewählter Triticeae-Arten ist die gesteigerte Anzahl an Körnern bei den modernen Kulturvarietäten – dank einer erhöhten Blütenfruchtbarkeit.

Alle Pflanzen der Triticeae entwickeln während ihres Wachstums einen unverzweigten Blütenstand, welcher als Ähre bezeichnet wird. Im Weizen setzt sich die Ähre aus mehreren Ährchen zusammen, welche jeweils eine unbestimmte Anzahl an Korn-produzierenden Blütchen bilden. Während der Blütchenentwicklung produziert jedes Weizenährchen bis zu 12 potentiell fruchtbare Blütchenvorstufen.

Jedoch sterben die meisten dieser potenziellen Blütchen und damit Körner (über 70 %) während ihrer Entwicklung ab. Es ist bekannt, dass die Kornanzahl pro Ährchen von der Fruchtbarkeit der einzelnen Blütchen abhängt.

Trotzdem war die genetische Basis der Blütchenfruchtbarkeit bis vor kurzem noch weitgehend unerforscht. Eine internationale Gruppe von Wissenschaftlern, darunter mehrere Forscher des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), hat nun in Zusammenarbeit die genetischen Grundlagen der Blütchenfruchtbarkeit in Weizen entschlüsselt.

Die Forscher konzentrierten sich dabei auf ein „Quantitatives Trait Loci“ (QTL), welches zuvor bei einer genomweiten Assoziationsstudie in europäischen Winterweizensorten gefunden worden war und für eine erhöhte Anzahl an Körnern pro Ährchen sorgt. Nach der Kartierung des QTLs identifizierten sie den Grain Number Increase 1 (GNI1) Locus und das dazugehörige Gen GNI-A1, welches in Triticeaen durch eine Genduplikation auf dem Chromosomenarm 2AL entstanden war.

Die Wissenschaftler zeigten, dass das GNI-A1 Gen für einen Homöodomäne Leucin-Zipper Klasse I (HD-Zip I) Transkriptionsfaktor kodiert. Die Expression des Transkriptionsfaktors führt zu einer beeinträchtigten Entwicklung der Rachilla, der blütchentragenden Achse der Weizenährchen. Dies wiederum hat negative Auswirkungen auf die Blütchenfruchtbarkeit und den Kornertrag.

Im Laufe der Domestikation des Weizens führte die reduzierte Expression von GNI1 zu fruchtbareren Blütchen und einer Zunahme der Kornzahl pro Ährchen. Die Forscher entdeckten bei zusätzlichen Analysen von ertragsstarken Weizen-Kulturvarietäten eine eingeschränkt funktionierende Allel-Form des Gens GNI-A1.

Dieses mutierte Allel wurde in modernen Weizenarten mit hoher Blütchenfruchtbarkeit gefunden, was stark darauf hindeutete, dass es eine Erhöhung der Blütchenfruchtbarkeit bewirkt. Demnach waren im Laufe der Weizendomestikation Varietäten selektiert worden, welche das eingeschränkt funktionierende Allel trugen, da diese einen gesteigerten Kornertrag zeigten.

Der Erstautor der Studie, Dr. Shun Sakuma (IPK Gatersleben und Tottori University, Japan), welcher das Projekt unter Betreuung von Dr. Takao Komatsuda am National Institute of Agrobiological Sciences (derzeit am National Agriculture and Food Research Organization (NARO), Japan) initiiert hatte, betont: “Diese Studie zeigt zum ersten Mal einen direkten Zusammenhang zwischen erhöhter Blütchenfruchtbarkeit, höherer Kornzahl pro Ährchen und höherem Ernteertrag im Feldversuch bei Weizen.“

Das Projekt wurde von Dr. Sakuma in der Forschungsgruppe von Dr. Thorsten Schnurbusch am IPK Gatersleben fortgeführt. Weitere Experimente wurden gemeinsam mit Mitgliedern von drei anderen IPK-Forschungsgruppen sowie in Zusammenarbeit mit israelischen Wissenschaftlern der Hebrew University of Jerusalem durchgeführt.

Ein weiteres Ergebnis der internationalen Zusammenarbeit zeigte, dass GNI-A1 ein Ortholog des Gersten-Gens Vrs1 ist, welches die laterale Blütchenfruchtbarkeit in Gerste kontrolliert und eine Hemmung der Blütchenentwicklung bewirkt. Ähnlich wie das eingeschränkt funktionierende Allel von GNI-A1 im Weizen, sorgen die mutierten „loss-of-function“ Formen von Vrs1 wiederum für eine Erhöhung des Kornertrags.

Dr. Komatsuda (NARO), welcher zuvor an der Aufklärung der molekularen Grundlagen von Vrs1 in Gerste beteiligt war, ist „erfreut, dass wir nun entdeckt haben, was GNI1 tatsächlich in Weizen bewirkt.“ Das Auftreten von GNI1/Vrs1 und die parallele Selektion des mutierten Allels steht im Einklang mit der “genetischen Hotspot-Hypothese“. Diese besagt, dass evolutionär relevante Mutationen tendenziell in spezifischen Genen und an spezifischen Positionen in Genen auftreten.

Die Identifizierung und das Verständnis der genetischen Basis der Blütchenfruchtbarkeit eröffnen nun neue Wege zur Erweiterung des Wissens über die Pflanzenarchitektur, aber auch neue Möglichkeiten für die weitere Verbesserung des Kornertrags in Weizen. Denn, wie Dr. Schnurbusch (IPK) zum Ausdruck brachte: „Dieses Wissen kann uns dabei helfen, verwandte Gene zu finden, die in ähnlicher Weise arbeiten, um so die Getreideerträge weiterhin zu verbessern.“


Zusammenfassung:
- In Getreiden ist die Blütchenfruchtbarkeit ein bestimmender Faktor für die Anzahl an Körnern pro Blütenstand, jedoch ist die genetische Grundlage der Blütchenfruchtbarkeit des Weizens (Triticum sp.) weitgehend unbekannt.
- Identifizierung des Locus Grain Number Increase 1 (GNI1), welches nach Genduplikation zum Gen GNI-A1 führte.
- GNI-A1 kodiert einen Homöodomäne Leucin-Zipper Klasse I (HD-Zip I) Transkriptionsfaktor. Die Expression des Gens hemmt das Wachstum der Rachilla und beeinträchtigt somit die Blütchenfruchtbarkeit.
- Mutation von GNI-A1 führte zu einer Genvariante mit eingeschränkter Funktion. Im Gegensatz zum ursprünglichen Gen erhöht das mutierte Allel die Blütchenfruchtbarkeit und führt zu einer höheren Anzahl an fruchtbaren Blütchen pro Ährchen und folglich zu einer gesteigerten Kornproduktion. Im Laufe der Weizendomestikation wurden Pflanzen selektiert, welche das mutierte Allel tragen.
- Kollaboration von Wissenschaftlern aus Japan, Deutschland und Israel
- Publikation im Journal PNAS

Wissenschaftliche Ansprechpartner:

Dr. Thorsten Schnurbusch
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben
Tel.: +49 39482 5486,
E-mail: schnurbusch@ipk-gatersleben.de

Originalpublikation:

Unleashing floret fertility in wheat through the mutation of a homeobox gene” PNAS in press, https://doi.org/10.1073/pnas.1815465116

Regina Devrient | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ipk-gatersleben.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics