Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnzellen bei der Arbeit beobachten

03.01.2018

Tomáš Čižmár erforscht neue Methoden zur Kontrolle der Lichtleitung in optischen Fasern. Das Ziel seiner Forschungsaktivitäten ist es, miniaturisierte Fasersonden herzustellen, mit denen er einzelne Gehirnzellen in einem lebenden Organismus bei ihrer „Arbeit“ beobachten kann. Indem sie die dabei ablaufenden Prozesse besser verstehen, hoffen Forscher Antworten auf bisher nur unzureichend verstandene biologische Abläufe zu finden. Etwa wie sich Erinnerungen in unserem Gehirn verankern und wie wir sie wieder abrufen. Die Technologie könnte nützlich sein, um den Beginn von Alzheimer oder anderen schweren neurologischen Erkrankungen besser zu verstehen.

Tomáš Čižmár ist seit dem 2. Januar 2018 Professor für Wellenleiteroptik und Faseroptik an der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität Jena und wird am Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT) die Abteilung Faseroptik leiten. Die Forschungsgebiete des Physikers umfassen optische Manipulation kleinster Partikel, die Untersuchung von Lichtleitprozessen in optischen Fasern sowie deren Anwendung in haarfeinen endoskopischen Fasersonden für die biomedizinische Bildgebung.


Prof. Tomáš Čižmár

S. Döring/ Leibniz-IPHT

Um hochaufgelöste Bilder aus schwer zugänglichen Körperregionen wie dem Gehirn zu erhalten ohne dabei das Gewebe großflächig zu schädigen, sind haarfeine Endoskopiesonden nötig. Herkömmliche faserbasierte Endoskope wären für solche Eingriffe viel zu groß. Sie bestehen meist aus einem Bündel mehrerer optischer Fasern, in dem jede Faser ein Pixel des Bildes überträgt.

Eine von Tomáš Čižmár entwickelte holographische Methode erlaubt es nun, hochaufgelöste Bilder durch eine einzelne, nur ein Zehntel Millimeter dünne, optische Faser zu übertragen. „Die komplexe und schwer vorhersagbare Lichtleitung in solchen multimodalen Fasern verhinderte bis vor Kurzem ihren Einsatz in der Mikroskopie. Die Bildinformationen kamen völlig durcheinander und verzerrt aus der Faser. Mittels digitaler Holographie und Computeralgorithmen ist es uns gelungen, die verzerrten Bilder wiederherzustellen. Die hochauflösende Mikroskopie mit extrem dünnen Fasern öffnet ein Fenster, um Prozesse in vorher unerreichbaren Regionen lebender Organismen zu studieren – eventuell auch irgendwann beim Menschen“, so Tomáš Čižmár über die Zukunft der Technologie.

Für sein Forschungsprojekt LIFEGATE erhielt Tomáš Čižmár den anerkannten Consolidator Grant des Europäischen Forschungsrats – eine Auszeichnung für exzellente Wissenschaftler. In den kommenden fünf Jahren unterstützt der Forschungsrat das Projekt des 38-jährigen Forschers am Leibniz-IPHT finanziell. Am Institut möchte er zunächst die Lichtleitprozesse in multimodalen Fasern genauer erforschen. Um die Technologie letztendlich auch in der Mikroendoskopie einsetzen zu können, müssen die Fasern vor allem flexibel sein.

Das ist eine Herausforderung, denn beim Verbiegen der Fasern verzerrt das übertragene Bild auf unterschiedliche Weise. Eine Lösung des Problems verspricht sich der Forscher von einem genaueren Verständnis der Lichtausbreitung in der Faser. Die bisher relativ langsame Übertragungsgeschwindigkeit möchte Čižmár durch schnellere Grafikprozessoren und bessere Datenverarbeitungsalgorithmen erhöhen. „Am IPHT kann ich eine einzigartige technologische Infrastruktur für meine grundlagenorientierte Forschung im Bereich Faseroptik und -technologie nutzen.

Zudem lässt sich die holografische Mikroendoskopie mit den hier etablierten Bildgebungstechniken kombinieren und so die Palette an lichtbasierten Technologien für die Medizin und Biologie erweitern“, begründet der gebürtige Tscheche seine Entscheidung nach Jena zu kommen. Parallel zu den Arbeiten am Leibniz-IPHT, forscht er zusammen mit Partnern am Institute of Scientific Instruments in Brno/Tschechien an der Integration der Fasern in Mikroendoskopiesonden und deren experimenteller Anwendung.

Über Tomáš Čižmár:

Von 2003 bis 2007 arbeitete der Physiker in der Gruppe von Prof. Pavel Zemánek am Institute of Scientific Instruments der Tschechischen Akademie der Wissenschaften und der Masaryk Universität in Brno, wo er im Jahr 2006 auf dem Gebiet der Wellen- und Partikeloptik promoviert wurde. Anschließend forschte Čižmár als Postdoc in der Gruppe von Prof. Kishan Dholakia an der University of St. Andrews, Schottland in zahlreichen Projekten zum Thema optische Manipulation und biomedizinische Photonik. Mit einem Forschungsstipendium wechselte er 2010 von der School of Physics & Astronomy zur School of Medicine, um dort innovative Konzepte für die holographische Endoskopie, ein neues Gebiet der komplexen Photonik, zu etablieren. Bevor Čižmár nach Jena kam war er Dozent an der University of Dundee und University of St. Andrews. In seiner Forschergruppe „Complex Photonics“ in Dundee untersuchte er neue Methoden zur optischen Manipulation, Photonik in chaotischen Systemen und Lichtleitungsprozesse in optischen Fasern.

Das Leibniz-Institut für Photonische Technologien:

Das Leibniz-Institut für Photonische Technologien (Leibniz-IPHT) erforscht die wissenschaftlichen Grundlagen für photonische Verfahren und Systeme höchster Sensitivität, Effizienz und Auflösung. Gemäß dem Motto „Photonics for Life – from ideas to instruments“ entwickeln Wissenschaftlerinnen und Wissenschaftler am Leibniz-IPHT maßgeschneiderte Lösungen für Fragestellungen aus den Bereichen Lebens- und Umweltwissenschaften sowie Medizin.

Weitere Informationen:

https://www.leibniz-ipht.de/institut/presse/aktuelles/detail/gehirnzellen-bei-de...

Dr. Anja Schulz | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics