Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn verschiedene Melodien lernen kann

06.06.2013
Verschiedene Melodien haben oft gemeinsame Passagen. Wenn wir uns an eine bestimmte Melodie erinnern, schaffen wir es aber mühelos, die Stücke trotzdem nicht zu verwechseln.

Wie solche sich überlappenden Sequenzen über Nervenzellen im Gehirn gelernt und ohne Verwechslung abgerufen werden können, erklären Wissenschaftler der Universität Bern anhand eines neuen mathematischen Modells.

Unser Gehirn ist in der Lage, Sequenzen von neuronalen Aktivitätsmustern im Millisekundenbereich abzuspeichern und wiederzugeben. So verlangt der Aufschlag eines Tennisprofis die präzise Abfolge von neuronaler Aktivität in der motorischen Hirnrinde, um den Ball schliesslich im richtigen Winkel zu treffen.

Durch Tausende von Wiederholungen werden Verbindungen zwischen den motorischen Nervenzellen über ihre Kontaktstellen, die Synapsen, «eingebrannt», welche dann die gewünschte Bewegung auslösen. Nach der allgemein akzeptierten Vorstellung werden Verbindungen von unmittelbar nacheinander aktivierten Nervenzellen gestärkt oder wie es die Hebb’sche Lernregel in griffigem Englisch verkürzt ausdrückt: «Fire together, wire together.»

Falls es nur eine einzige Sequenz zu lernen gibt, kann eine Nervenzelle nach der anderen aktiviert werden, und dazu wäre die Hebb’sche Regel ausreichend. Aber wie lernt das neuronale Netzwerk etwa zwei Sequenzen, jede mit einer Pause, um nach dieser die richtige Fortsetzung zu finden? Hier können zusätzliche Hintergrund-Neuronen helfen, welche eine solche Pause durch ihre Aktivität überbrücken.

Im Beispiel der Melodie zählen die Hintergrund-Neuronen in der Pause gewissermassen die Schläge und am Schluss weisen sie auf die passende Fortsetzung hin. Eine Lernregel jedoch, die geeignete Hintergrund-Neuronen aktiviert und etwa in eine unterbrochene Sequenz einbindet, war bis anhin nicht bekannt.

Johanni Brea, Walter Senn und Jean-Pascal Pfister vom Institut für Physiologie der Universität Bern haben nun im «Journal of Neuroscience» ein mathematisches Modell vorgeschlagen, welches die Hebb’sche Lernregel erweitert und für das Erlernen unterbrochener Sequenzen anwendbar ist.

Wichtig sind die Neuronen im Hintergrund

Ausgangspunkt der Theorie ist eine Unterscheidung von Vorder- und Hintergrund-Neuronen. Die Vordergrund-Neuronen repräsentieren die Aktivierungsmuster, die durch die Sequenz vorgegeben sind. Beim Tennisaufschlag ist die Sequenz durch motorische, bei der Melodie durch auditive neuronale Vordergrund-Aktivität gegeben. Während sich die Sequenz in den Vordergrund-Neuronen abspielt, sind in einer anfänglich zufälligen Reihenfolge auch Hintergrund-Neuronen aktiv. Diese lernen, die Abfolge der Vordergrund-Aktivität zu unterstützen.

Die synaptischen Verbindungen zu den Hintergrund-Neuronen dürfen aber nicht nach der Hebb’schen Regel angepasst werden, da sich sonst die zunächst zufälligen und womöglich falschen Abfolgen in den Hintergrund-Neuronen «einbrennen».

«Gemäss unserem vorgeschlagenen mathematischen Modell werden die synaptischen Veränderungen durch ein Signal moduliert, welches die Wirkung der Hintergrund- auf die Vordergrund-Aktivität abschätzt», erklärt Letztautor Jean-Pascal Pfister: Falls sich die aktuelle Hintergrund-Aktivität unterstützend auswirkt, wird die ursprüngliche Hebb’sche Lernregel angewandt – andernfalls wird das Vorzeichen der Lernregel umgekehrt und die Verbindung von sequenziell aktivierten Neuronen geschwächt. «Im Falle der Melodie bedeutet dies, dass innerhalb der Pause diejenige Hintergrund-Aktivität unterdrückt wird, die eine frühzeitige oder falsche Fortsetzung der Melodie auslösen würde», so der Berner Neurophysiologe.

Astrozyten könnten das übergeordnete Signal errechnen

Das Modell der Berner Forschenden macht experimentell direkt testbare Voraussagen. Am gleichen Institut wurde kürzlich nachgewiesen, dass Astrozyten, die bislang vor allem als Energielieferanten für Nervenzellen angesehen wurden, auch synaptische Verbindungsstärken verändern.

Da Astrozyten auf verschiedene Arten die Aktivität des umliegenden neuronalen Netzwerkes im Sekundenbereich widerspiegeln, könnten sie allenfalls die Abweichung von Hinter- und Vordergrund-Aktivität ermitteln und entsprechend das Vorzeichen der synaptischen Änderung modulieren – so wie das die theoretisch hergeleitete Lernregel voraussagt. «Wie genau dieses postulierte übergeordnete Signal die synaptischen Verbindungen anpasst, das kann nun durch Experimente herausgefunden werden», erklärt Jean-Pascal Pfister.
Quellenangabe:
Johanni Brea, Walter Senn und Jean-Pascal Pfister: Matching storage and recall in sequence learning with spiking neural networks. The Journal of Neuroscience, June, 5 June 2013, 33(23): 9565-9575; doi: 10.1523/​JNEUROSCI.4098-12.2013

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lichtgesteuerte Moleküle: Forscher öffnen neue Wege im Recycling
14.08.2018 | Humboldt-Universität zu Berlin

nachricht Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können
13.08.2018 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgesteuerte Moleküle: Forscher öffnen neue Wege im Recycling

14.08.2018 | Biowissenschaften Chemie

Sicherheitslücken im Internetprotokoll „IPsec“ identifiziert

14.08.2018 | Informationstechnologie

Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All

14.08.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics