Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Funktionelle Magnetresonanztomographie unter der Lupe

08.11.2012
Max-Planck-Wissenschaftler enthüllen laminare Unterschiede der neurovaskulären Kopplung zwischen dem positiven und negativen BOLD Signal.

Die Großhirnrinde spielt eine entscheidende Rolle bei unserer Sinneswahrnehmung. Sie besteht aus sechs verschiedenen Schichten, die sich sowohl anatomisch als auch physiologisch unterscheiden. Könnten wir die aus verschiedenen Schichten stammenden Signale voneinander getrennt messen, könnten wir möglicherweise Rückschlüsse auf die neuronalen Prozesse in aktivierten Hirnarealen ziehen.


A: Visueller Stimulus um positive und negative BOLD-Reaktionen in der Sehrinde hervorzurufen;
B: Positive und negative BOLD-Reaktionen im primären visuellen Kortex auf eine visuellen Reiz in Managen;
C: Messung des zerebralen Blutvolumen (CBV) mittels funktioneller Magnetresonanztomografie auf einen visuellen Reiz in der visuellen Großhirnrinde.

Jozien Goense / Max-Planck-Institut für biologische Kybernetik, Tübingen

Das Team um Jozien Goense, Wissenschaftlerin am Max-Planck-Institut für biologische Kybernetik in Tübingen, hat mithilfe der funktionellen Magnetresonanztomographie (fMRI) schicht-spezifische neuronale Prozesse in der Hirnrinde untersucht. Sie entdeckte zum einen, dass den positiven und negativen fMRI Signalen unterschiedliche Mechanismen zugrunde liegen. zum anderen konnte sie zeigen, dass die einzelnen Schichten der Grosshirnrinde unterschiedlich auf visuelle Reize reagieren.

Die Großhirnrinde ist die äußerste Schicht des Gehirns. Sie ist für Sinneswahrnehmung, Gedächtnis, Aufmerksamkeit, Denken, Sprache und andere kognitive Funktionen zuständig. Bei Säugetieren besteht sie aus sechs horizontalen Schichten, den Laminae, die sich zum Beispiel anhand unterschiedlicher Zelltypen oder verschiedenartiger Vernetzung der Nervenfasern unterscheiden lassen. Bisher war es nur schwer möglich, diese Schichten in lebendigen Organismen voneinander getrennt zu untersuchen.

Dies hat vor allem technische Gründe: die geringe Auflösung der funktionellen Magnetresonanztomographie, die Einschränkung optischer Methoden auf die Betrachtung der oberen Schichten und die Schwierigkeit der exakten Positionsbestimmung von Elektroden, die ins Gehirn eingeführt werden. Könnte man jedoch die unterschiedlichen Hirnsignale visualisieren, wäre es möglich, die kortikalen Verschaltungen und damit auch die verschiedenen Arbeitsschritte bei der Informationsverarbeitung zu untersuchen.

Die funktionelle Magnetresonanztomographie (functional Magnetic Resonance Imaging – fMRI) ist die am häufigsten verwendete Methode, um Gehirnaktivtäten zu untersuchen. Es ist ein nicht-invasives bildgebendes Verfahren, welches basierend auf Blutflussänderungen und Sauerstoffverbrauch physiologische Funktionen im Inneren des Gehirns darstellt. Meistens wird dabei der sogenannte BOLD-Kontrast (blood-oxygenation-level-dependent) gemessen, welcher den Sauerstoffgehalt in den roten Blutkörperchen widerspiegelt.

Dadurch können Hirnareale, welche beispielsweise aufgrund eines visuellen Reizes aktiviert werden, identifiziert werden. Abgesehen von der typischerweise verwendeten geringen räumlichen Auflösung, ist noch nicht bekannt, ob und wie schicht-spezifisch die neuralen Prozesse im BOLD-Signal wiedergegeben werden. Alternative weniger häufig angewandte Verfahren sind die Messung des zerebralen Blutvolumens (CBV) und des zerebralen Blutflusses (CBF). Als zerebrales Blutvolumen, kurz CBV, bezeichnet man die sich zu einem gegebenen Zeitpunkt innerhalb des Gehirns (lateinisch: Cerebrum) befindliche Blutmenge, die der Gehirnversorgung dient. Der zerebrale Blutfluss, CBF, ist die Grundlage für die Sauerstoff- und Nährstoffversorgung der Nervenzellen des Gehirns. Die unterschiedlichen Methoden messen dabei verschiedene Aspekte der Blutflussänderung nach einer neuralen Reaktion auf einen Sinnesreiz.

Jozien Goense ist Projektgruppenleiterin in der Abteilung „Physiologie kognitiver Prozesse“ von Direktor Nikos Logothetis am Max-Planck-Institut für biologische Kybernetik in Tübingen. Sie und ihr Kollege Hellmut Merkle aus dem „Laboratory of Functional and Molecular Imaging” am “National Institutes of Health” in Bethesda (USA) nutzten eine hochauflösende fMRI-Methode, um die BOLD-, CBV-und CBF-Reaktionen auf visuelle Reize zu messen, welche positive und negative BOLD-Signale in der visuellen Hirnrinde von Makaken auslösten. Die Wissenschaftler verglichen Aktivitätsmuster von stimulierenden Reizen mit den Mustern auf visuellen Reize, welche bekanntermassen ein negatives BOLD-Signal, also ein Rückgang des BOLD-Signals, auslösen. Da negative BOLD-Signale oft direkt neben den stimulierten Hirnarealen auftreten, wird vermutet, dass diese Signale ein Resultat neuraler Unterdrückung sind.

Die Wissenschaftler fanden heraus, dass das negative BOLD-Signal nicht lediglich das Gegenteil des klassischen positiven BOLD-Signals ist, sondern, dass ihm ein separater Mechanismus zugrunde liegt. Des Weiteren reagierten die unterschiedlichen Schichten der Hirnrinde unterschiedlich auf die beiden visuellen Reize. Dies deutet darauf hin, dass sich die sogenannte neurovaskulären Kopplung, also der physiologische Mechanismus, welcher die neuronalen Signale mit dem BOLD-Signal verbindet, nicht nur in den unterschiedlichen Schichten, sondern auch im Bezug auf die beiden Reize, unterscheidet. Dies bedeutet, dass man möglicherweise anhand schicht-spezifischer Messungen in der Großhirnrinde untersuchen kann, welche Art von Prozessen sich in der Großhirnrinde abspielen.

Diese Ergebnisse deuten darauf hin, dass den positiven und negativen BOLD-Signalen unterschiedliche Mechanismen der neurovaskulären Kopplung zugrunde liegen und ebenso laminare Unterschiede in der neurovaskulären Kopplung existieren. Die Konsequenzen dieser Erkenntnisse sind sehr bedeutend, da sie die Interpretation des BOLD-Signals, vor allem des negativen BOLD-Signals, bei fMRI-Studien verbessern können. Darüber hinaus eröffnen diese Ergebnisse die Möglichkeit, neuronale Verarbeitungsschritte innerhalb einer Schicht der Großhirnrinde zu untersuchen. Dies könnte wiederum die Anwendungsgebiete der funktionellen Magnetresonanztomografie erweitern und die Technik in Punkto räumlicher Auflösung weiter verbessern.

Originalpublikation:
J. Goense, H. Merkle, N. K. Logothetis. (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron, doi: 10.1016/j.neuron.2012.09.019
Kontakt:
Dr. Jozien Goense
Tel.: 07071 601-1704
E-Mail: jozien.goense@tuebingen.mpg.de
Stephanie Bertenbreiter (Pressereferentin)
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de/
http://www.kyb.tuebingen.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektronenbeugung zeigt winzige Kristalle in neuem Licht
24.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf
24.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics