Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017

Physiker aus Mainz untersuchen mithilfe von mathematischen Algorithmen experimentelle 3-D-Strukturen von Chromosomen

Wer kennt das nicht: Lange Wollfäden verheddern sich schneller, als man hinschauen kann – und auch Ladekabel und Co. neigen dazu, unliebsame Knoten auszubilden. Auch unser Erbgut liegt in langen Strängen vor, die – ginge es nach unserer Alltagserfahrung – ebenfalls zum Verheddern neigen müssten. Bisher war es nicht möglich, dies experimentell zu untersuchen.


Die Forscher der JGU fanden zwei Knoten in Chromosom 14 – diese sind mit durchgezogenen Linien gekennzeichnet. Der Farbverlauf im Bild dient lediglich der Orientierung. Die beiden hervorgehobenen blauen und roten Punkte markieren Anfang und Ende des Chromosoms.

Abb./ ©: Jonathan Siebert, JGU

Wie Forscher der Johannes Gutenberg-Universität Mainz (JGU) nun herausgefunden haben, könnten Chromosomen tatsächlich verknotet sein. "Mit mathematischen Algorithmen haben wir die 3-D-Polymermodelle von Chromosomen untersucht, die Kollegen der University of Cambridge aus ihren experimentellen Daten erstellt haben", berichtet Dr. Peter Virnau vom Institut für Physik der JGU.

"Bisher konnte die Verknotung von Chromosomen nicht untersucht werden, da die genaue dreidimensionale Struktur nicht vorlag. Aber auf Grundlage der Chromosomenmodelle aus Cambridge können wir jetzt davon ausgehen, dass Chromosomen miteinander verwoben und verknotet sind."

Basis der Berechnung bildeten die dreidimensionalen Chromosomen-Modelle, die im Frühjahr 2017 veröffentlicht wurde [1]. Die Mainzer Forscher haben diese Modelle an beiden Enden verlängert und miteinander verbunden, denn die mathematische Berechnung von Knoten kann nur an geschlossenen Kurven funktionieren.

"Man kann sich das vorstellen, als fasse man an beiden Enden des Chromosoms an und ziehe sie zusammen", verdeutlicht Virnau. Das so erweiterte Modell haben die Forscher mit speziellen mathematischen Algorithmen analysiert.

Das Mainzer Forscherteam geht nun davon aus, dass die Verknüpfungen zwischen Chromosomen im weiteren Zellzyklus aufgelöst werden müssen, dass aber Verknotungen innerhalb eines Chromosoms vielleicht keinen Einfluss auf die Funktion und die Übermittlung von genetischen Informationen haben.

Außerdem gibt es bereits bestimmte Proteine mit komplizierten Knoten, was man sich in der Fachwelt lange nicht vorstellen konnte. Und auch die DNA in Viren, die Bakterien angreifen, in sogenannten Bakteriophagen, ist verknotet. Während sich die Knoten in diesen speziellen Proteinen immer an der gleichen Stelle bilden, scheinen sie bei den Viren jedoch eher zufällig verteilt aufzutreten. Dr. Peter Virnau vermutet, dass es genauso auch bei den Chromosomen sein könnte.

Noch können die Forscher aus Mainz nicht gesichert sagen, ob ihre Ergebnisse in der vereinfachten Struktur des Polymermodells selbst begründet liegen oder ob sie in der Tat auf die wahre Form von Chromosomen hinweisen. Jedoch liefern die Berechnungen aus Cambridge und Mainz einen ersten Hinweis darauf, dass Chromosomen mitunter verknotet und trotzdem funktional sein könnten.

[1] J.T. Stevens et al, 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 2017, 544, 59–64.

Veröffentlichung:
Jonathan T. Siebert et al.
Are There Knots in Chromosomes?
Polymers, 2. August 2017
DOI: 10.3390/polym9080317
http://www.mdpi.com/2073-4360/9/8/317

Abbildung:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_knoten_chromosomen.jpg
Die Forscher der JGU fanden zwei Knoten in Chromosom 14 – diese sind mit durchgezogenen Linien gekennzeichnet. Der Farbverlauf im Bild dient lediglich der Orientierung. Die beiden hervorgehobenen blauen und roten Punkte markieren Anfang und Ende des Chromosoms.
Abb./ ©: Jonathan Siebert, JGU

Kontakt und weitere Informationen:
Dr. Peter Virnau
Condensed Matter Theory Group
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-20493
Fax +49 6131 39-20496
E-Mail: virnau@uni-mainz.de
http://www.komet331.physik.uni-mainz.de/virnau.php

Weiterführender Link:
http://www.komet331.physik.uni-mainz.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diagnostik für alle
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Inaktiver Rezeptor macht Krebs-Immuntherapien wirkungslos
14.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics