Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Form ist Funktion

12.09.2019

Flüssigkeitsähnliches Verhalten von Gewebe ist ein Schlüsselprinzip für die Entstehung von Formen in biologischen Systemen.

Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam haben gezeigt, dass sich wachsendes Knochengewebe auf langen Zeitskalen wie eine viskose Flüssigkeit verhält und dadurch Formen mit minimaler Oberfläche annimmt. Dieses Verhalten der Zellen bestimmt die Form des Gewebes, wenn es auf ein Gerüst aufwächst.


L: Phasenkontrastbilder eines auf einer Kapillarbrücke gewachsenen Gewebes. R: Mit fluoreszierendem Marker eingefärbtes Skelett der Zellen, um sie mit Lichtblattmikroskopie in 3D sichtbar zu machen.

Max-Planck-Institut für Kolloid- und Grenzflächenforschung/Sebastian Ehrig

Eine besondere Stärke und gleichzeitig faszinierende Eigenschaft lebender Systeme ist ihre Anpassungsfähigkeit an sich verändernde Umweltbedingungen. Diese Fähigkeit besitzt auch der menschliche Knochen. Dieser wird laufend durch An- und Abbau kleiner Knochenpakete erneuert. Dieser Umbauprozess wird nach mechanischen Prinzipien über einen Regelkreis kontrolliert.

Dadurch besitzt Knochen die Fähigkeit sich ändernden mechanischen Anforderungen anzupassen. Als Reaktion auf veränderte mechanische Belastungen, etwa durch regelmäßige Sportaktivitäten, ändert der Knochen seine Struktur und passt seine innere Form an. Unter welchen Bedingungen sich Knochengewebe bestmöglich züchten lässt, hat John Dunlop, ehemaliger Arbeitsgruppenleiter am Potsdamer Max-Planck-Institut für Kolloid- und Grenzflächenforschung und jetzt Professor für Biophysik an der Universität Salzburg mit seinem Team untersucht.

Biologische Strukturen werden von Zellen erzeugt, die viel kleiner sind als die entstehende Form. Die Zellen sind sogar dazu in der Lage die Krümmung einer Oberfläche zu ertasten, die viel größer ist als sie selbst. Doch wie gelingt es den Zellen, komplexe makroskopische Formen zu erzeugen oder bei der Knochenheilung die ursprüngliche Form wiederherzustellen?

„Eine partielle Antwort auf diese Frage könnte die Erkenntnis aus dieser Arbeit sein, dass Zellen Oberflächenenergie für die Formbildung nutzen, auf ähnliche Weise wie komplexe Gebilde auf Grund der Oberflächenenergie aus Seifenblasen entstehen können.“ sagt Peter Fratzl, Direktor am Potsdamer Max-Planck-Institut und Koautor der Studie, an der auch Forscher von der Berliner Charité, aus Würzburg, aus Dresden und von der Montanuniversität Leoben beteiligt waren.

Formen mit konstanter mittlerer Krümmung

Die Forscher konnten zeigen, dass Gewebe, welches auf gekrümmten Oberflächen wuchs, Formen mit Außengrenzen konstanter mittlerer Krümmung entwickelte. Diese ähneln sehr stark Formen von Flüssigkeitstropfen, die eine minimale Oberfläche annehmen. Als Substrate für das Zell- und Gewebewachstum dienten gekrümmte Oberflächen aus Kunststoff, die Sebastian Ehrig während seiner Doktorarbeit herstellte.

Dabei wurde ein flüssiges Polymer verwendet, das sich bei hohen Temperaturen verfestigt und mit dem Substrat mit unterschiedlichen Geometrien hergestellt wurde, auf denen die Zellen wachsen und neues Gewebe bilden konnten. Die Menge des gebildeten Gewebes hing dabei von der Form des Substrats ab. Dabei fiel auf, dass auf stark konkaven Oberflächen mehr Gewebe gebildet wurde, was auf einen mechanisch induzierten biologischen Rückkopplungsmechanismus hinweist.

Durch Hemmung der Zellkontraktilität konnte nachgewiesen werden, dass aktive Zellkräfte notwendig sind, um ausreichende Oberflächenspannungen für das flüssigkeitsähnliche Verhalten und das Wachstum des Gewebes zu erzeugen. „Dies legt nahe, dass die mechanische Signalübertragung zwischen Zellen und ihrer physischen Umgebung zusammen mit der kontinuierlichen Reorganisation von Zellen und Matrix ein Schlüsselprinzip für die Entstehung der Gewebeform ist.“ unterstreicht Sebastian Ehrig, Erstautor und ehemaliger Doktorand am MPI für Kolloid- und Grenzflächenforschung, der jetzt am Max-Delbrück Center in Berlin forscht.

Chirale Strukturen

Mithilfe der Lichtblattmikroskopie konnten Einblicke in die räumliche Gewebestruktur gewonnen werden, wobei eine weitere bemerkenswerte Entdeckung gemacht wurde: Die Zellen ordneten sich zu ausgedehnten chiralen Strukturen an, die sich spiralförmig um die Kapillarbrücken schlängelten. Ähnliche Strukturen findet man auch in Osteonen, die kleinste Funktionseinheit des Knochens. Ein Osteon entsteht, indem sich knochenbildende Zellen (Osteoblasten) konzentrisch in 4-20 Schichten um ein Blutgefäß lagern, einmauern und zu Lamellenknochen werden.

Die hier vorgelegte Publikation legt nahe, dass flüssigkeitsähnliches Gewebeverhalten ein Schlüsselprinzip für die Entstehung von Formen in biologischen Systemen ist. Dies könnte weitreichende Konsequenzen haben im Hinblick auf das Verständnis von Heilungsprozessen und der Organentwicklung und auch für medizinische Anwendungen wie der Entwicklung von Implantaten relevant sein.

Originalpublikation:

S. Ehrig, B. Schamberger, C. M. Bidan, A. West, C. Jacobi, K. Lam, P. Kollmannsberger, A. Petersen, P. Tomancak, K. Kommareddy, F. D. Fischer, P. Fratzl, John W. C. Dunlop
Surface tension determines tissue shape and growth kinetics
Sci. Adv. 2019; 5: eaav9394

Weitere Informationen:

http://www.mpikg.mpg.de/6166385/news_publication_13874437_transferred

Katja Schulze | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics