Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feinmotorik für Roboterhände

22.01.2015

Neurowissenschaftler des Deutschen Primatenzentrums können Greifbewegungen der Hand durch die Aktivität verschiedener Gehirnzellen vorhersagen

Schnürsenkel binden, den Kaffee umrühren, Briefe schreiben, Klavier spielen. Von alltäglichen bis hin zu anspruchsvollen Tätigkeiten: Unsere Hände benutzen wir so häufig wie kein zweites Körperteil. Durch die ausgeprägte Feinmotorik sind wir in der Lage, Greifbewegungen mit unterschiedlicher Präzision und Kraftverteilung anzuwenden.


Neuronale Informationen können eines Tages auch für die Kontrolle von Handprothesen verwendet werden.

Sebastian Lehm


Handbewegungen werden im Primatengehirn durch die Areale AIP, F5 und M1 gesteuert.

Grafik: Stefan Schaffelhofer

Diese Fähigkeit ist ein grundlegendes Merkmal der Primatenhand. Wie Handbewegungen im Gehirn geplant werden, war bis jetzt noch weitgehend unklar. Stefan Schaffelhofer, Andres Agudelo-Toro und Hansjörg Scherberger vom Deutschen Primatenzentrum (DPZ) konnten mit ihrer jüngsten Forschung an Rhesusaffen zeigen, wie verschiedene Greifbewegungen im Gehirn gesteuert werden.

Anhand elektrophysiologischer Messungen in jenen Hirnarealen, die für die Planung und Umsetzung von Handbewegungen verantwortlich sind, konnten die Wissenschaftler eine Vielzahl von Handstellungen durch die Analyse genau dieser neuronalen Signale vorhersagen. In ersten Anwendungsversuchen konnten die so entschlüsselten Grifftypen auf eine Roboterhand übertragen werden.

Die Ergebnisse der Studie sollen künftig in die Entwicklung von Neuroprothesen einfließen, um gelähmten Patienten die Wiedererlangung von Handfunktionen zu ermöglichen (The Journal of Neuroscience, 2015).

„Wir wollten herausfinden, wie verschiedene Handbewegungen vom Gehirn gesteuert werden und ob wir die Aktivität von Nervenzellen nutzen können, um unterschiedliche Grifftypen vorherzusagen“, sagt Stefan Schaffelhofer, Neurowissenschaftler in der Abteilung Neurobiologie des DPZ.

Im Rahmen seiner Doktorarbeit hat er sich intensiv mit jenen Gehirnarealen der Großhirnrinde beschäftigt, die für die Planung und Ausführung von Handbewegungen verantwortlich sind. Dabei hat er herausgefunden, dass visuelle Informationen für greifbare Objekte, speziell deren dreidimensionale Form und Größe, vornehmlich in der Region AIP verarbeitet werden. Die Übertragung der visuellen Eigenschaften eines Gegenstandes in entsprechende Bewegungsbefehle wird dagegen überwiegend in den Arealen F5 und M1 gesteuert.

Um die Regulierung verschiedener Greifbewegungen in diesen Hirnregionen im Detail zu untersuchen wurde die Aktivität von Nervenzellen mit sogenannten Multielektrodenarrays aufgezeichnet. Die Forscher haben die Rhesusaffen darauf trainiert, 50 Objekte unterschiedlicher Form und Größe wiederholt zu greifen. Gleichzeitig wurden alle Finger- und Handbewegungen der Affen mit Hilfe eines elektromagnetischen Datenhandschuhs aufgezeichnet um die angewandten Grifftypen zu identifizieren und mit den neuronalen Signalen vergleichen zu können.

„Wir haben alle Objekte vor Beginn einer Greifbewegung beleuchtet, so dass die Affen sie sehen und deren Form erkennen konnten“, erklärt Stefan Schaffelhofer. „Die anschließende Greifbewegung fand dann mit kurzer Verzögerung im Dunkeln statt. So konnten wir die Reaktionen der Nervenzellen auf die visuellen Reize von den rein motorischen Signalen trennen und außerdem die Phase der Bewegungsplanung untersuchen.“

Anhand der Aktivität der Nervenzellen, die während der Planung und Ausführung der Greifbewegungen gemessen wurde, konnten die Wissenschaftler anschließend Rückschlüsse auf die angewendeten Grifftypen ziehen. Die vorhergesagten Griffe wurden mit den tatsächlich im Versuch aufgezeichneten Handkonfigurationen abgeglichen.

„Die Aktivität der gemessenen Gehirnzellen ist stark vom angewandten Griff abhängig. Anhand dieser neuronalen Unterschiede, können wir berechnen, welche Handbewegung das Tier ausführt“, sagt Stefan Schaffelhofer. „In der Planungsphase lagen wir damit zu 86 Prozent richtig, in der Greifphase konnten wir die Bewegung zu 92 Prozent richtig bestimmen.“

Die so entschlüsselten Handkonfigurationen wurden anschließend erfolgreich auf eine Roboterhand übertragen. Damit haben die Wissenschaftler gezeigt, dass eine große Anzahl verschiedener Handstellungen mittels neuronaler Planungs- und Ausführungssignale erfasst und genutzt werden kann. Eine Erkenntnis, die zukünftig vor allem für querschnittsgelähmte Patienten, bei denen die Verbindung zwischen Gehirn und Gliedmaßen nicht mehr funktioniert, eine große Bedeutung hat.

„Die Ergebnisse unserer Studie sind sehr wichtig für die Entwicklung von neuronal gesteuerten Handprothesen. Sie zeigen wo und vor allem wie das Gehirn Greifbewegungen steuert“, fasst Stefan Schaffelhofer zusammen. „Im Unterschied zu anderen Anwendungen ermöglicht unser Verfahren eine Vorhersage der Grifftypen bereits in der Planungsphase der Bewegung. In Zukunft könnten damit neuronale Schnittstellen generiert werden, die diese motorischen Signale auslesen, interpretieren und Prothesen steuern können.“

Originalpublikation

Schaffelhofer, S., Agudelo-Toro, A. and Scherberger, H. (2015): Decoding a wide range of hand configurations from macaque motor, premotor and parietal cortices. The Journal of Neuroscience 35(3):1068-1081

Kontakt

Dr. Stefan Schaffelhofer
Tel.: +49 551 3851-484
E-Mail: sschaffelhofer@dpz.eu

Dr. Susanne Diederich (Kommunikation)
Tel.: +49 551 3851-359
E-Mail: sdiederich@dpz.eu

Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält außerdem drei Freilandstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 89 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.dpz.eu/de/startseite/einzelansicht/news/feinmotorik-fuer-roboterhaend...
http://youtu.be/ajcmvFlTEN8

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics