Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem breite Infrarotspektren durch strukturelle Fluktuationen von Flüssigkeiten

04.07.2016

Die Ursache der extrem breiten Infrarotabsorption von Protonen in wässriger Umgebung wird seit langem kontrovers diskutiert. Ein Forscherteam des Max-Born-Instituts in Berlin und der Ben Gurion Universität des Negev in Beer-Sheva zeigt jetzt am Beispiel des Zundel-Kations (H₂O...H⁺...OH₂) H₅O₂⁺, dass die umgebende Flüssigkeit fluktuierende elektrische Kräfte auf das Proton ausübt und damit seine Schwingungsbewegung zwischen den beiden Wassermolekülen moduliert. Dieser Mechanismus ruft zusammen mit niederfrequenten thermischen Bewegungen die extreme Verbreiterung des Infrarotspektrums hervor.

Das Proton (H⁺), der positiv geladene Kern des Wasserstoffatoms, nimmt eine zentrale Rolle bei vielen Vorgängen in der Natur ein. In flüssigem Wasser wird der Transport von elektrischer Ladung durch die Bewegung von Überschuss-Protonen dominiert während die Bewegung von Protonen durch Zellmembranen die Grundlage der Zellatmung darstellt.


Abb. 1: Die Hydratisierung von Protonen geht weit über das typische Textbuchbeispiel des Hydroniums hinaus.

Bild: MBI


Abb. 2: Transiente Infrarotspektren zeigen die unterschiedliche Antwort der OH- Streckschwingung und des Zundelkontinuums nach Femtosekundenanregung.

Bild: MBI

Trotz dieser weitreichenden Relevanz sind die molekulare Natur und Dynamik von Überschuss-Protonen in Wechselwirkung mit Wassermolekülen ihrer Umgebung nicht vollständig verstanden. Schwingungs-, namentlich Infrarotspektroskopie hat dazu beigetragen, die molekularen Strukturen hydratisierter Überschuss-Protonen als Eigen- und Zundel-Kationen zu identifizieren.

Diese Strukturen zeichnen sich durch eine überaus breite, unstrukturierte Infrarotabsorption aus, das sogenannte "Zundelkontinuum" (Abbildung 1). Sie sind in flüssigem Wasser instabil, d.h. wandeln sich auf der Femto- bis Pikosekunden Zeitskala (1 Pikosekunde = 1 ps = 10⁻¹² s) in andere Strukturen um. Der dem Absorptionskontinuum zu Grunde liegende Mechanismus ist stark umstritten.

Wissenschaftlern des Max-Born-Institutes für Nichtlineare Optik und Ultrakurzzeitspektroskopie in Berlin und der Ben Gurion Universität des Negev in Beer-Sheva, Israel gelang es nun den Ursprung des Breitbandkontinuums durch nichtlineare Infrarotspektroskopie mit Femtosekunden-Zeitauflösung aufzuklären. Für das spezifische Modellsystem H₅O₂⁺, das aus zwei Wassermolekülen bestehende und von einem Proton zusammengehaltene Zundel-Kation (H₂O...H⁺...OH₂), differenzierten sie in zeitaufgelösten Messungen das Zundelkontinuum von der OH Streck- und Biegeschwingungsdynamik der beiden Wassermoleküle (Abbildung 2).

Wie in Angewandte Chemie Int. Ed. (DOI: 10.1002/anie.201602523) berichtet, erlaubt eine gezielte Wahl der Femtosekunden-Anregebedingungen von Molekülschwingungen die Isolation der kurzlebigen Kontinuumsabsorption. Die verschiedenen Schwingungsanregungen weisen hierbei Lebensdauern von unter 60 fs auf, weitaus kürzer als die der OH Streck- und Biegeschwingungen in reinem Wasser.

Die theoretische Analyse der Resultate zeigt, dass die extreme Verbreiterung der Infrarotabsorption aus Bewegungen des inneren Protons unter dem Einfluss starker, schnell fluktuierender elektrischer Felder der umliegenden polaren Lösungsmittelmoleküle resultiert. Die Energie der Protonbewegung entlang der sogenannten Protontransferkoordinate (in Richtung der Verbindung der zwei Wassermoleküle in (H₂O...H⁺...OH₂) wird durch die externen Felder stark moduliert, was gleichzeitig zu einer Energiemodulation der Schwingungsübergänge führt.

So erkundet das System eine breite Verteilung von Übergangsenergien auf einer Zeitskala von weniger als 100 fs. Zusammen mit Schwingungsobertönen, Kombinationstönen und Schwingungen welche den Abstand zweier Wassermoleküle verändern, führen die durch das Feld modulierten Übergänge zu der beobachteten extremen Verbreiterung der Infrarotabsorption. Aufgrund der extrem schnellen strukturellen Fluktuationen werden bestimmte H⁺ Anordnungen sehr schnell verwaschen, d. h. das System weist eine extrem kurzlebige strukturelle Erinnerung auf.

Dieser neue Blick auf das Zundel-Kation geht deutlich über die vielen, in der Gasphase durchgeführten Studien an hydratisierten Protonen hinaus, in welchen aufgrund der Tieftemperaturbedingungen das Zundelkontinuum nicht beobachtet wird. Die Resulate sind für viele dynamische Aspekte hydratisierter Protonen von Bedeutung, sei es für den Protontransport in Wasser durch den berühmten von Grotthuss-Mechanismus, in Wasserstoff-Brennstoffzellen oder biologischen Systemen, deren Funktion durch die Translokation von Protonen bestimmt ist.

Publikation:
Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J. and Elsaesser, T. (2016), The Hydrated Excess Proton in the Zundel Cation H5O2+: The Role of Ultrafast Solvent Fluctuations. Angew. Chem. Int. Ed., DOI: 10.1002/anie.201602523

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin

Dr. Erik T. J. Nibbering
Tel. 030 6392 1477
nibberin@mbi-berlin.de

Prof. Dr. Thomas Elsässer
Tel. 030 6392 1400
elsaesser@mbi-berlin.de

Abb. 1: Die Hydratisierung von Protonen geht weit über das typische Textbuchbeispiel des Hydroniums (H₃O⁺) hinaus. Eigen- und Zundel-Kationen wurden nach den führenden Wissenschaftlern Manfred Eigen und Georg Zundel benannt, welche diese Strukturen in den sechziger Jahren des 20. Jahrhunderts postuliert haben. Das lineare Absorptionsspektrum im mittleren Infrarotbereich zeigt die deutlichen Beiträge von OH Streck- und Biegeschwingungen der Wassermoleküle und das spektral sehr breite Zundelkontinuum. Dieses Zundelkontinuum resultiert aus den ultraschnellen Potentialfluktationen der Protontransferkoordinate, was die Modulation der Übergangsenergien von Fundamentalschwingung, Obertonschwingungen und Kombinationsschwingungen zur Folge hat.

Abb. 2: Transiente Infrarotspektren zeigen die unterschiedliche Antwort der OH- Streckschwingung und des Zundelkontinuums nach Femtosekundenanregung.
Grafik: MBI

Publikation:
Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J. and Elsaesser, T. (2016), The Hydrated Excess Proton in the Zundel Cation H5O2+: The Role of Ultrafast Solvent Fluctuations. Angew. Chem. Int. Ed., DOI: 10.1002/anie.201602523

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics