Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Essenskanäle für Bakterien

23.02.2015

Bakterien verbinden sich untereinander und tauschen Nährstoffe aus. Dass Bakterien sich bei Nährstoffmangel gegenseitig aushelfen ist schon länger bekannt.

Wie dieser Nährstoffaustausch praktisch aussehen kann, haben jetzt Wissenschaftler am Max-Planck-Institut für chemische Ökologie in Jena sowie der Universitäten Jena, Kaiserslautern und Heidelberg, herausgefunden. Sie entdeckten, dass manche Bakterien Nanokanäle zwischen einzelnen Zellen ausbilden, die den direkten Austausch von Nährstoffen ermöglichen. (Nature Communications, 23. Februar 2015)


Elektronenmikroskopische Aufnahme gentechnisch veränderter Bakterienstämme der Arten Escherichia coli und Acinetobacter baylyi, die Aminosäuren über Nanokanäle austauschen.

Martin Westermann / Elektronenmikroskopisches Zentrum am Universitätsklinikum der Friedrich-Schiller-Universität Jena

Bakterien leben zumeist in artenreichen Gemeinschaften, in denen häufig Nährstoffe und andere Stoffwechselprodukte ausgetauscht werden. Es war bislang unklar, ob Mikroorganismen diese Substanzen ausschließlich über die Umwelt austauschen oder ob sie dafür direkte Verbindungen zwischen den Zellen benutzen.

Wissenschaftler der Forschungsgruppe Experimentelle Ökologie und Evolution am Max-Planck-Institut für chemische Ökologie in Jena haben bakterielle Gene ausgeschaltet, sodass die Bakterien manche Aminosäuren nicht mehr produzieren konnten, andere wiederum in erhöhtem Maße herstellten. Für ihre Experimente nutzten die Wissenschaftler das Bodenbakterium Acinetobacter baylyi, sowie den Darmkeim Escherichia coli.

Wuchsen die so veränderten Bakterien zusammen, konnten sie sich gegenseitig ernähren, um so den experimentell erzeugten Aminosäuremangel wieder auszugleichen (siehe auch unsere Pressemeldung vom 2. Dezember 2013 „Arbeitsteilung im Reagenzglas - Bakterien wachsen schneller, wenn sie sich gegenseitig Nährstoffe zur Verfügung stellen“ - http://www.ice.mpg.de/ext/1051.html?&L=1). Wurden die Bakterien allerdings durch einen Filter getrennt, der Aminosäuren im Nährmedium zwar durchließ, einen direkten Austausch zwischen den beiden Bakterienstämmen jedoch verhinderte, konnte keiner der Stämme wachsen.

„Dies zeigte uns, dass offenbar ein direkter Kontakt zwischen den Zellen notwendig ist, um die Nährstoffe auszutauschen“, erläutert Samay Pande, der im Rahmen seiner Doktorarbeit am Max-Planck-Institut in Jena an diesem Projekt forschte und inzwischen wissenschaftlicher Mitarbeiter der ETH Zürich ist.

Im Elektronenmikroskop konnten die Wissenschaftler beobachten, dass sich zwischen beiden Bakterienarten Nanoröhren bildeten, die den Austausch von Nährstoffen ermöglichten. Auffallend war dabei, dass nur das Darmbakterium Escherichia coli solche Strukturen nutzte, um sich mit Acinetobacter baylyi-Zellen zu verbinden.

„Ein wesentlicher Unterschied zwischen diesen beiden Arten ist sicherlich, dass E. coli sich aktiv in Flüssigkeiten fortbewegen kann, während A. baylyi dazu nicht imstande ist. Es könnte deswegen sein, dass E. coli schwimmend seine Partner findet und so identifiziert, mit welcher Zelle es sich über Nanokanäle verbinden möchte,“ meint Christian Kost, Leiter der von der Volkwagen-Stiftung geförderten Forschungsgruppe Experimentelle Ökologie und Evolution.

„Ein Mangel an Aminosäuren löst die Bildung der Nanokanäle aus. Schalten wir ein Gen aus, welches für die Bildung einer bestimmten Aminosäure notwendig ist, verbinden sich die so genetisch veränderten Bakterien mit anderen Zellen, um ihren Nährstoffmangel zu kompensieren. Geben wir aber die benötigte Aminosäure zum Wachstumsmedium dazu, werden keine Nanokanäle produziert. Die Ausbildung dieser Strukturen hängt also davon ab, wie „hungrig“ eine Zelle ist“, fasst der Wissenschaftler die Ergebnisse zusammen.

In Bakteriengemeinschaften ist es für einzelne Arten von großem Vorteil, sich auf bestimmte biochemische Prozesse zu spezialisieren und andere Arbeiten sozusagen auszulagern: Das spart Ressourcen und steigert Effizienz und Wachstum. Ob Nanokanäle nur dem hierzu notwendigen wechselseitigen Austausch von Nährstoffen dienen, oder ob einzelne Bakterienarten andere Bakterien auch parasitisch anzapfen und aussaugen, müssen weitere Untersuchungen klären. Auch ist bislang noch unklar, ob Bakterien gezielt steuern können, an welche Zelle sie sich anheften. Immerhin ist eine solche Röhrenverbindung auch potenziell riskant, denn der Partner auf der anderen Seite könnte der Nanokanal-bildenden Zelle auch schaden.

„Die spannendste Frage bleibt für mich, ob es sich bei Bakterien tatsächlich um einzellige, relativ einfach strukturierte Organismen handelt, oder ob wir es mit einer anderen Form der Vielzelligkeit zu tun haben. Bakterien könnten beispielsweise ihre Komplexität dadurch steigern, dass sie sich mit anderen Bakterien verbinden und so ihre Fähigkeiten kombinieren“, sagt Christian Kost. Seine Arbeitsgruppe widmet sich der zentralen Frage, warum Lebewesen miteinander kooperieren. Bakterielle Lebensgemeinschaften als experimentelle Modellsysteme sollen dabei helfen zu verstehen, warum sich bei den meisten Lebewesen im Laufe der Evolution ein kooperativer Lebensstil durchgesetzt hat. [AO/CK/HR]

Originalveröffentlichung:
Pande, S., Shitut, S., Freund, L., Westermann, M., Bertels, F., Colesie, C., Bischofs, I. B., Kost, C. (2015. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nature Communications, DOI 10.1038/ncomms7238.
http://dx.doi.org/10.1038/ncomms7238

Weitere Informationen:
Dr. Christian Kost, Forschungsgruppe Experimentelle Ökologie und Evolution, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 (0)3641 57 1212, E-Mail ckost@ice.mpg.de

Kontakt und Bildanfragen
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/633.html (Forschungsgruppe Experimentelle Ökologie und Evolution)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics