Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzym mit eingebauter Bremse

11.07.2016

Forscher schalten die Schwachstelle eines wertvollen biologischen Katalysators aus

Das natürlich in Zellen vorkommende Enzym DERA beschleunigt Reaktionen, aus denen begehrte Grundstoffe für Medikamente wie Cholesterin-Senker entstehen. Für die Pharmazeutische Industrie hätte es dadurch längst ein lukratives Werkzeug werden können.


Globale Struktur des DERA-Enzyms.

HHU / Forschungszentrum Jülich


Nahaufnahme des katalytischen Zentrums im deaktivierten Zustand.

HHU / Forschungszentrum Jülich

In der Praxis geht die Aktivität des Enzyms jedoch wieder verloren, sobald höhere Konzentrationen seines Reaktionspartners erreicht werden. Forscher entdeckten nun als Ursache einen unerwarteten, im Molekül eingebauten Blockade-Mechanismus, der durch minimale Veränderung der Enzymstruktur entfernt werden konnte.

Die Studie wurde in der aktuellen Ausgabe des renommierten Journals Chemical Science der Royal Society of Chemistry veröffentlicht.

Enzyme sind hocheffiziente Werkzeuge der Natur, die Reaktionen stark beschleunigen oder überhaupt erst in Gang bringen. Viele Vorgänge im Körper benötigen die Unterstützung der natürlichen Katalysatoren, und auch für die Industrie bieten sie oft eine Präzision und Effizienz, die mit anderen chemischen Syntheseverfahren kaum zu erreichen ist. Allerdings ist den Proteinmolekülen, aus denen Enzyme bestehen, oft eine gewisse Fragilität zu eigen, die unter industriellen Bedingungen zu Schwierigkeiten führen kann.

Ein solcher Fall ist das Enzym DERA. Es katalysiert sogenannte Aldol-Reaktionen, bei denen Grundsubstanzen für verschiedene Medikamente aus dem günstigen Ausgangsstoff Acetaldehyd entstehen – etwa die Vorstufen von Statinen, die als Cholesterin-Senker einen Milliardenmarkt ausmachen. Doch leider arbeitet DERA nur bei relativ niedrigen Konzentrationen von Acetaldehyd. Wird ein bestimmter Schwellenwert überschritten, kommt die enzymatische Aktivität völlig zum Erliegen und kehrt auch nicht wieder, wenn die Konzentration wieder sinkt.

„Ein Katalysator, der so empfindlich auf das Ausgangsmaterial reagiert, ist natürlich für die Industrie nur schwer einsetzbar“, sagt Prof. Dr. Jörg Pietruszka, Leiter des Instituts für Bioorganische Chemie (IBG-1: Biotechnologie) der Heinrich-Heine-Universität Düsseldorf (HHU) auf dem Campus des Forschungszentrums Jülich. „Deshalb wollten wir genauer untersuchen, was die Ursache der mangelnden Stabilität ist.“

Gemeinsam mit Strukturbiologen des Jülicher Institute of Complex Systems: Strukturbiochemie (ICS-6) und des Düsseldorfer Instituts für Physikalische Biologie nutzten die Forscher eine Kombination extrem hochauflösender Verfahren, um die Reaktionsschritte mit molekularer Präzision zu beobachten. Die bisherige Vermutung, dass Acetaldehyd als recht aggressiver Stoff die empfindliche Proteinstruktur zerstöre, bestätigte sich dabei nicht.

Stattdessen offenbarten die eingesetzten Verfahren NMR-Spektroskopie und Röntgenstrukturanalyse ein seltenes Nebenprodukt der Reaktion als tatsächliche Ursache. Sogenanntes Crotonaldehyd, ein kleines Molekül aus nur wenigen Atomen, blockierte im aktiven Zentrum des Enzyms eine für die Katalyse entscheidende Stelle. Der Effekt tritt erst bei höheren Konzentrationen von Acetaldehyd auf, weil Crotonaldehyd erst unter diesen Bedingungen in hinreichender Menge gebildet wird.

„Der Einblick in die molekularen Abläufe legte zudem eine einfache Möglichkeit nah, um das Problem abzustellen“, erklärt Markus Dick, Erstautor der Studie. Indem die Forscher eine Aminosäure im Bauplan des Enzyms austauschten, konnten sie eine Version des Enzyms herstellen, die vollständig resistent gegen die Acetaldehyd-Bremse ist. Die Hoffnungen, die von Seiten der Industrie in DERA gesetzt werden, könnten sich dadurch nun erfüllen.

Prof. Dr. Dieter Willbold, Leiter des Biomolekularen Zentrums und Direktor des Düsseldorfer Instituts für Physikalische Biologie und des Jülicher ICS-6 dazu: „Für die Optimierung biotechnologischer Prozesse könnte diese strukturbasierte Vorgehensweise Schule machen.“

Originalpublikation
Markus Dick, Rudolf Hartmann, Oliver H. Weiergräber, Carolin Bisterfeld, Thomas Classen, Melanie Schwarten, Philipp Neudecker, Dieter Willbold and Jörg Pietruszka, Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies, Chem. Sci., 2016, 7 (July), 4492-4502.
DOI: 10.1039/C5SC04574F

Kontakt
Prof. Dr. Jörg Pietruszka
Institut für Bioorganische Chemie der HHU im Forschungszentrum Jülich
Tel.: 02461/61-4158
E-Mail: j.pietruszka@fz-juelich.de

Prof. Dr. Dieter Willbold
Institut für Physikalische Biologie der HHU /
Institute of Complex Systems, Strukturbiochemie (ICS-6) des Forschungszentrums Jülich
Tel.: 02461/61-2100
E-Mail: d.willbold@fz-juelich.de

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hepatitis C-Viren erfolgreich ausschalten
25.03.2019 | Helmholtz-Zentrum für Infektionsforschung

nachricht Molekulares Doping
25.03.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Feuerwehrmaske mit Datenbrille ermöglicht Navigation in verrauchten Räumen

25.03.2019 | Innovative Produkte

Vermessung der Gedanken beim Speichern von Wissenskonzepten

25.03.2019 | Biowissenschaften Chemie

Eisriesen im Labor: Kunststoff hilft HZDR-Forschern, Planeten besser zu verstehen

25.03.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics