Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein genetischer Nano-Baukasten für neue Biomaterialien

24.03.2020

Magnetbakterien können zur Herstellung neuartiger Biomaterialien genutzt werden. Ein Team von Mikrobiologen an der Universität Bayreuth unter der Leitung von Prof. Dr. Dirk Schüler hat mit diesem Ziel erstmals ein Baukasten-System entwickelt, das die genetische Umprogrammierung der Bakterien ermöglicht. Die Bakterien werden dadurch zu Produzenten magnetischer Nanopartikel, die verschiedene nützliche Funktionen und Eigenschaften miteinander kombinieren. Erste Studien lassen auf eine gute Biokompatibilität der Partikel schließen. Das Anwendungspotenzial in der Biomedizin und Biotechnologie ist deshalb hoch. In der Zeitschrift „Small“ stellen die Wissenschaftler ihre Erkenntnisse vor.

Von Magnetosomen zu vielseitig nützlichen Nanopartikeln


Zelle des magnetischen Bakteriums Magnetospyrillum gryphiswaldense mit verketteten Magnetosomen. Eine Zelle ist zwischen drei und fünf Mikrometern lang. Unten links: Einzelnes Magnetosom mit Eisenoxid-Kern und umgebender Membran. Auf spezifischen Proteinen der Membran werden genetisch verschiedene funktionelle Gruppen aus unterschiedlichen Fremdorganismen installiert.

Grafik: Frank Mickoleit / Clarissa Lanzloth

Magnetbakterien der Spezies Magnetospirillum gryphiswaldense richten ihre Fortbewegungen am Erdmagnetfeld aus. In ihren Zellen sind magnetische Nanopartikel, die Magnetosomen, kettenförmig angeordnet und bilden damit eine Art Kompass-Nadel.

Jedes Magnetosom besteht aus einem magnetischen Eisenoxid-Kern, welcher von einer Membran umgeben ist. Diese enthält neben Lipiden (Fetten) eine Vielzahl von Proteinen (Eiweißen).

Den Bayreuther Mikrobiologen ist es nun gelungen, an diese Proteine biochemisch aktive funktionelle Gruppen anzukoppeln, welche aus verschiedenen Fremdorganismen stammen. Das dabei angewendete Verfahren setzt bei den Genen an, die für die Biosynthese der Membran-Proteine zuständig sind.

Diese Gene werden aus dem Genom (Erbgut) der Bakterien herausgelöst und mit Genen gekoppelt, welche die Herstellung der jeweiligen funktionellen Gruppen steuern. Sobald die Gene wieder in das Genom eingebaut sind, produzieren die umprogrammierten Bakterien Magnetosomen, auf deren Oberfläche diese Gruppen fest installiert sind.

Im Einzelnen wurden vier unterschiedliche funktionelle Gruppen mit Membran-Proteinen gekoppelt. Hierzu gehört das Enzym Glukose-Oxidase aus einem Schimmelpilz, das heute bereits als „Zuckersensor“ bei Diabetes-Erkrankungen biotechnologisch angewendet wird.

Ebenso konnten ein grün-fluoreszierendes Protein aus einer Qualle sowie ein farbstoffbildendes Enzym aus dem Bakterium Escherichia coli, dessen Aktivität sich leicht messen lässt, auf der Oberfläche der Magnetosomen installiert werden. Die vierte funktionelle Gruppe stellt ein Antikörper-Fragment aus einem Lama dar.

„Mit dieser genetischen Umprogrammierung haben wir die Bakterien dazu gebracht, Magnetosomen zu produzieren, die bei einer Bestrahlung mit UV-Licht grün leuchten und zugleich biokatalytische Funktionen haben. Auf ihren Oberflächen können zielgenau verschiedene biochemische Funktionen installiert werden.

So verwandeln sich Magnetosomen, die aus lebenden Bakterien stammen, in multifunktionale Nanopartikel mit faszinierenden Funktionen und Eigenschaften. Die Partikel bleiben unverändert, wenn man sie aus den Bakterien isoliert. Dies ist aufgrund ihrer herausragenden magnetischen Eigenschaften leicht möglich“, sagt Professor Dirk Schüler, der die Forschungsarbeiten koordiniert hat.

Ein genetischer Baukasten für Anwendungen in Biomedizin und Biotechnologie

Die Funktionen, mit denen die Magnetosomen von den Bayreuther Mikrobiologen ausgestattet wurden, sind nicht die einzigen, die auf der Membran installiert werden können. Sie können leicht durch andere Funktionen ersetzt werden. Das Verfahren der genetischen Umprogrammierung eröffnet daher ein weites Spektrum von Design-Möglichkeiten.

Es stellt die Grundlage für einen „genetischen Baukasten" dar, der die Herstellung maßgeschneiderter Magnet-Nanopartikel erlaubt. Ganz unterschiedliche nützliche Funktionen und Eigenschaften lassen sich dabei kombinieren. Jeder dieser Partikel hat einen Durchmesser zwischen 30 und 50 Nanometern.

„Unser gentechnisches Verfahren zeichnet sich durch eine hohe Selektivität und Kontrollierbarkeit aus. Herkömmliche chemische Kopplungsmethoden sind dagegen längst nicht so leistungsfähig“, erklärt der Bayreuther Mikrobiologe Dr. Frank Mickoleit, der Erstautor der Studie. Er verweist auf einen entscheidenden Vorteil der neuen Biomaterialien:

„Bisherige Studien zeigen, dass die Magnet-Nanopartikel in Zellkulturen keinen Schaden anrichten. Gute Biokompatibilität ist eine wichtige Voraussetzung, um die Partikel zukünftig in der Biomedizin anwenden zu können, etwa als Kontrastmittel in Bildgebungsverfahren oder als Sensoren in der Diagnostik. Die Partikel könnten so zum Beispiel helfen, Tumorzellen aufzuspüren und zu zerstören.“ Ein weiteres Anwendungsfeld sind Bioreaktorsysteme. Hierfür eignen sich Magnet-Nanopartikel, die mit winzigen Katalysatoren bestückt sind und komplexe biochemische Prozesse ermöglichen.

„Für die Kopplung verschiedener funktioneller Gruppen auf der Oberfläche von Nanopartikeln gibt es insbesondere in der Biotechnologie und auch in der Biomedizin ein enormes Anwendungspotenzial. Die Magnetbakterien sind die Plattform für einen faszinierenden Nano-Baukasten, der die wissenschaftliche Kreativität auf dem Gebiet der Synthetischen Biologie beflügelt. Er wird weitere interessante Forschungsansätze anstoßen“, ergänzt die Mikrobiologin Clarissa Lanzloth B.Sc., die als Mitautorin wesentlich an der neuen Studie beteiligt war und in Bayreuth den Masterstudiengang „Biochemie und Molekulare Biologie“ absolviert.​

Grafik zum Download:

https://www.uni-bayreuth.de/de/universitaet/presse/pressemitteilungen/2020/041-g...

Wissenschaftliche Ansprechpartner:

Kontakt:
Prof. Dr. Dirk Schüler
Lehrstuhl für Mikrobiologie
Universität Bayreuth
Telefon: +49 (0)921 55-2729
E-Mail: dirk.schueler@uni-bayreuth.de

Originalpublikation:

Frank Mickoleit, Clarissa Lanzloth, Dirk Schüler: A Versatile Toolkit for Controllable and Highly Selective Multifunctionalization of Bacterial Magnetic Nanoparticles. Small (2020), doi: http://dx.doi.org/10.1002/smll.201906922

Siehe auch:

Frank Mickoleit, Valérie Jérôme, Ruth Freitag, Dirk Schüler: Bacterial Magnetosomes as Novel Platform for the Presentation of Immunostimulatory, Membrane-bound Ligands in Cellular Biotechnology. Advanced Biosystems (2020), doi: http://dx.doi.org/10.1002/adbi.201900231

​Dirk Schüler, René Uebe: Nanokristalle für die Magnetfeldorientierung – Biogenese von Magnetosomen. BIOspektrum (2019), doi: http://dx.doi.org/10.1007/s12268-019-0997-y

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Selbst bei Bakterien können sich Geschwister unterscheiden
14.07.2020 | Eberhard Karls Universität Tübingen

nachricht Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt
13.07.2020 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt

13.07.2020 | Biowissenschaften Chemie

Alternativmethoden für Tierversuche: VISION – Ein mikrofluidisches Chipsystem als Alternative zu Tierversuchen

13.07.2020 | Biowissenschaften Chemie

Neue Molekülbibliothek hilft bei der systematischen Suche nach Wirkstoffen

13.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics