Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Filament geht durch die Wand

24.03.2016

Gestreifte Muskulatur: Wissenschaftler der Universitäten Jena und Stuttgart präsentieren ein molekulares Modell, das die Kontraktion bei kurzen Längen erstmals schlüssig erklären kann

Die Physiologielehrbücher müssen überarbeitet werden: Die Kontraktion gestreifter Muskelfasern verläuft auf molekularer Ebene anders als bislang vermutet. Das berichten Bewegungswissenschaftler der Friedrich-Schiller-Universität Jena und der Universität Stuttgart.


Ausschnitt der Mikrostruktur gestreifter Muskulatur: Die Myosinfilamente (rot und grün) zweier benachbarter Sarkomere durchdringen die maschenartige Struktur der sogenannten Z-Scheibe.

Abbildung: Christian Rode/FSU


Dr. Christian Rode mit einem einfachen Muskelmodell. Der Bewegungswissenschaftler von der Uni Jena hat die Mikrostruktur der gestreiften Muskulatur untersucht.

Foto: Jan-Peter Kasper/FSU

In einer aktuellen Publikation in den „Proceedings of the Royal Society B“ präsentieren Dr. Christian Rode und seine Kollegen ein neuartiges Modell, das die Bewegungsabläufe der Muskelfilamente erstmals schlüssig erklärt und mit sämtlichen experimentellen Daten in Einklang bringt (DOI: 10.1098/rspb.2015.3030).

Muskeln sind die „Motoren“ all unserer Bewegungen. Egal ob wir nur leicht mit dem Finger übers Smartphone-Display wischen oder eine schwere Wasserkiste eine Treppe hinauftragen. Etwa 650 Muskeln arbeiten im menschlichen Körper und sie alle funktionieren nach demselben Prinzip. Wenn der Muskel kontrahiert, gleiten zwei Sorten langgestreckter Proteinmoleküle ineinander und verkürzen dabei den Muskel.

„Von großen Muskellängen kommend steigt die Kraft mit dem Überlappungsgrad beider Molekülketten an“, erläutert Bewegungswissenschaftler Dr. Christian Rode von der Universität Jena. Unter dem Mikroskop mit polarisiertem Licht betrachtet, verleihen die als Aktin und Myosin bezeichneten Moleküle der Muskulatur ein typisches Streifenmuster, weshalb die Skelett-Muskulatur auch als „gestreifte Muskulatur“ bezeichnet wird.

All dies ist seit vielen Jahrzehnten wissenschaftlicher Konsens und Bestandteil eines jeden Lehrbuchs zur Muskelphysiologie. Doch das bisherige Modell hat gravierende Lücken. „Zum Beispiel erzeugt der Muskel bei sehr kurzen Längen immer noch Kräfte, obwohl das nach der bisherigen Theorie nicht möglich ist“, so Dr. Rode. „Diese experimentell immer wieder bestätigten Befunde sind bislang aber ausgeklammert worden, eben weil man keine Erklärung für sie hatte.“

Gemeinsam mit Prof. Dr. Reinhard Blickhan, der den Jenaer Lehrstuhl für Bewegungswissenschaft innehat, und Kollegen der Uni Stuttgart unter Leitung von Prof. Dr. Tobias Siebert hat Rode nun ein Modell entwickelt und simuliert, das diese Daten erstmals schlüssig erklären kann.

Um das zu verstehen, ist ein weiterer Blick tief in die Mikrostruktur der Muskeln notwendig: Die kleinste funktionelle Einheit der Muskelfibrillen ist ein Sarkomer. Ein Sarkomer besteht aus Bündeln von Aktin und Myosinfäden, die an sogenannten Z-Scheiben verankert sind. Diese Z-Scheiben bilden gleichzeitig eine gitterartige Netzstruktur zwischen den Sarkomeren – ähnlich einem Maschendrahtzaun, der einzelne Grundstücke voneinander abgrenzt.

Wenn der Muskel kontrahiert und die Aktin- und Myosinfilamente ineinander gleiten, nähern sich benachbarte Z-Scheiben einander an. Sobald die maximale Überlappung erreicht ist, stoßen die steifen Myosinfilamente an der gegenüberliegenden Z-Scheibe an. Im Gegensatz zur bisherigen Lehrmeinung, wonach die Myosin-Filamente an den Z-Scheiben ungeordnet zusammengestaucht werden, schlagen die Forscher in ihrer nun vorgelegten Publikation einen alternativen Mechanismus vor.

„Die Myosinfilamente stoßen nicht an den Z-Scheiben an, sie dringen in ihre netzartige Struktur ein und gehen durch sie hindurch“, erklärt Christian Rode.

Nur so lasse sich erklären, warum der maximal verkürzte Muskel immer noch mehr Kraft erzeugt – die Myosinfilamente überlappen dafür mit den Aktinfilamenten im benachbarten Sarkomer. „Die Myosinmoleküle sind außerdem viel zu steif, um sich an den Z-Scheiben so zusammenzustauchen, wie es das herkömmliche Modell vorsah“, ist Dr. Rode überzeugt. Das von den Muskelforschern entwickelte und in der aktuellen Studie vorgestellte Modell ermögliche es nun erstmals, sämtliche strukturellen und funktionellen Befunde zur Muskelkontraktion in Einklang zu bringen. Davon versprechen sich die Wissenschaftler langfristig auch ein besseres Verständnis für bestimmte Muskelerkrankungen.

Original-Publikation:
Rode C et al. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function, Proceedings of the Royal Society B, 2016, DOI: 10.1098/rspb.2015.3030

Kontakt:
Dr. Christian Rode
Institut für Sportwissenschaft der Friedrich-Schiller-Universität Jena
Seidelstraße 20, 07749 Jena
Tel.: 03641 / 945704
E-Mail: christian.rode[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen
19.02.2020 | Max-Planck-Institut für Ornithologie

nachricht Einblicke in den Ursprung des Lebens: Wie sich die ersten Protozellen teilten
19.02.2020 | Universität Augsburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics