Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn der Durchschnitt einfach nicht gut genug ist

10.02.2014
Der Durchschnitt wird für viele Dinge ermittelt: die Körpergröße, monatliche Arbeitstage oder die Wohnungsmieten einer Stadt, und spielt auch in der Analyse wissenschaftlicher Daten eine wichtige Rolle.

Am Beispiel der Analyse von Proteinkristallstrukturen demonstrieren Computerbiologen der Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien nun, dass das nicht immer der beste Weg ist.


Atommodell des Proteins Villin Kopfstück. Farbe und Größe der Ellipsoide stellen die lokale Dynamik der einzelnen Atome dar.

Copyright: Bojan Zagrovic

Die Studie des Teams um Bojan Zagrovic, erschienen im Fachjournal Nature Communications, zeigt, dass Proteinstrukturen wahrscheinlich sehr viel dynamischer und heterogener sind, als gängige Methoden zur Röntgenstrukturanalyse nahelegen.

Wann die Ermittlung des Durchschnitts gut ist und wann nicht

Generell ist der Durchschnitt eine gute Sache, denn er kann helfen, einen Überblick über verschiedenste Gegebenheiten zu bekommen und das Leben ein ganzes Stück einfacher machen. Zum Beispiel wenn es beim Essen mit einer Gruppe von FreundInnen ans Bezahlen geht. Nimmt man die Gesamtrechnung und teilt sie durch die Anzahl der anwesenden Personen, bezahlt jederR in etwa soviel, wie er auch individuell bezahlt hätte, vorausgesetzt jedeR hatte ein Getränk und ein Essen.

Haben jedoch einige eine Vorspeise, Steak, Dessert und Sekt bestellt, während man selbst nur Spaghetti und ein Glas Wasser hatte, wird man sich ziemlich abgezockt vorkommen, wenn man plötzlich den Durchschnitt von 45€ für das Essen zahlt. Auch bei der Analyse wissenschaftlicher Daten wird der Durchschnitt ermittelt und das ist gut so: WissenschaftlerInnen wiederholen ihre Experimente zumeist viele Male und bilden den Durchschnitt aus all ihren Messergebnissen. Nur wenn diese lediglich in geringem Maße voneinander abweichen, werden die ForscherInnen ihren Laborergebnisse Glauben schenken.

Röntgenkristallographie – oder wie die Struktur von Proteinen ermittelt wird

Eine der wichtigsten Methoden der modernen Biologie ist die Röntgenkristallographie. Hinter diesem komplizierten Namen steckt eine Methode, die es erlaubt, die Struktur von Proteinen zu ermitteln. Kennen WissenschaftlerInnen die Struktur eines Proteins, können sie nicht nur Rückschlüsse ziehen, was seine Funktion ist und wie es diese ausübt, sondern auch Medikamente entwickeln, die diese Funktion hemmen oder aktivieren. Zur Röntgenkristallographie wird ein Protein aufgereinigt und getrocknet – dabei entsteht ein Kristall aus Abermillionen Kopien des gleichen Proteins.

Bestrahlt man diesen nun mit Röntgenstrahlen, erhält man ein Bild von der Anordnung der kleinsten Baueinheiten eines Proteins – den Atomen – und wie dynamisch jedes Einzelne davon ist, d.h. wie stark es in seiner Position herumwackeln kann. Die Analyse eines Kristalls liefert also den Durchschnitt des Verhaltens von Abermillionen der jeweils gleichen Atome. Man würde annehmen, dass das genug ist um mit ziemlicher Sicherheit Aussagen über die tatsächliche Struktur des Proteins in der Natur machen zu können. Das dem nicht so ist und dass der Durchschnitt einen manchmal täuschen kann, erklärt der Leiter der Studie, Bojan Zagrovic: "Würde man zum Beispiel den durchschnittlichen Aufenthaltsort eines Torhüters während eine Fußballspiels bestimmen, bei dem nach der Halbzeit die Teams die Seiten wechseln, würde dieser ziemlich genau in der Mitte des Feldes liegen. Ich denke, wir alle sind uns einig, dass das weit von der Realität entfernt ist."

Die Atome von Proteinen wackeln bis zu sechsmal stärker als bisher angenommen
Wie genau können also die derzeit verwendeten Programme zur Analyse von röntgenkristallographischen Daten die Struktur und Dynamik eines Proteins bestimmen? Dieser Frage ging Antonija Kuzmanic, im Rahmen ihrer Doktorarbeit im Labor von Zagrovic und unterstützt durch dessen Starting Grant des Europäischen Forschungsrates (ERC) nach. In Zusammenarbeit mit Kollege Navraj S. Pannu an der Universität von Leiden, Niederlande, nutze sie Computersimulationen um einen Proteinkristall zu "bauen" und diesen röntgenkristallographisch zu untersuchen. Die dabei gewonnen Daten wurden schließlich mit den derzeit gängigen Softwareprogrammen ausgewertet und die Struktur des Proteins bestimmt. Dieser experimentelle Aufbau erlaubte es Antonija Kuzmanic Rückschlüsse darauf zu ziehen, ob und wie genau die momentanen Analysemethoden wirklich das "sehen" was da ist. „Wir waren total überrascht, als wir festgestellt haben, dass die gängigen Programme zur Analyse röntgenkristallographischer Daten zur Strukturbestimmung von Proteinen die Dynamik innerhalb des Proteins – also wie stark jedes einzelne Atom in seiner Position herumwackeln kann – völlig unterschätzen. Unsere Daten zeigen, dass die Beweglichkeit der Atome bis zu sechsmal höher ist. Das ist, als ob man seinen Kopf plötzlich um 180 Grad drehen könnte, statt nur nach links oder rechts“, wie Antonija Kuzmanic erklärt.

Inspirierende Arbeit

Garib Murshudov von der Universität Cambridge in England, Strukturbiologe und einer der Gutachter der Doktorarbeit von Antonija Kuzmanic, schrieb: "Das ist mein Lieblingskapitel, es ist inspirierend ... es zeigt ganz eindeutig, dass wir neue Methoden brauchen um die Dynamik von Proteinen in Kristallen zu beschreiben."

Solche Programme zur genaueren Analyse röntgenkristallographischer Daten und zur Bestimmung der Dynamik eines Proteins werden nicht nur ein realistischeres Bild von der Struktur eines Proteins in der Natur geben – also davon, wo der Torhüter sich tatsächlich aufhält und wie er sich bewegt – sondern auch helfen neue Medikamente zu entwickeln, die die Funktion eines Proteins gezielter und effizienter regulieren können.

Publikation in Nature Communications:
Antonija Kuzmanic, Navraj S. Pannu and Bojan Zagrovic: X-ray refinement significantly underestimates the level of microscopic heterogeneity in biomolecular crystals. In: Nature Communications (January 2014).

DOI: http://dx.doi.org/10.1038/ncomms4220

Max F. Perutz Laboratories
Die Max F. Perutz Laboratories (MFPL) sind ein gemeinsames Forschungs- und Ausbildungszentrum der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL sind rund 500 WissenschaftlerInnen in über 60 Forschungsgruppen mit Grundlagenforschung im Bereich der Molekularbiologie beschäftigt.
Rückfragehinweis:
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@mfpl.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics