Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Macht des Einzelnen: Hemmende Synapsen beeinflussen Signale im Gehirn mit hoher Präzision

06.08.2015

Informationen werden in unserem Gehirn über Billionen von Synapsen von einer Zelle zur nächsten weitergegeben. Für einen optimalen Datenfluss ist jedoch nicht nur die Übertragung von Informationen wichtig, sondern auch ihre gezielte Hemmung.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung maßgeblich beeinflussen können. Die Studie ergänzt ein wichtiges Puzzleteil zum Verständnis dieser grundlegenden Gehirnfunktion, die auch bei manchen Krankheiten eine Rolle spielt.


Hemmende Nervenzellen (grün) können über einzelne Synapsen die Signalverarbeitung in Zellen der Großhirnrinde (rot) modulieren oder blockieren.

MPI für Neurobiologie / Müllner

Das menschliche Gehirn besteht aus rund 100 Milliarden Nervenzellen. Jede dieser Zellen ist über mehrere hundert bis tausend Synapsen mit anderen Zellen verbunden. Unser Denken, Handeln und Fühlen, aber auch unsere Organ- und Körperfunktionen werden durch die synaptische Informationsweitergabe gesteuert – in jeder Sekunde sind es viele Billiarden Impulse.

Damit dieser enorme Datenstrom in geregelten Bahnen läuft, gibt es erregende Synapsen, die Informationen zwischen Zellen weitergeben, und hemmende Synapsen, die den Informationsfluss eingrenzen und verändern.

Wie wichtig auch das Unterdrücken unerwünschter Signale ist, zeigt sich unter anderem, wenn die Funktion der hemmenden Synapsen gestört ist: Es kommt zu einer überhöhten Erregung im Gehirn, wie sie zum Beispiel bei Epilepsie zu sehen ist.

Doch auch um zu lernen, oder sich zu erinnern, braucht das Gehirn Nervenzellen, die die Aktivität anderer Nervenzellen regulieren. Die meisten dieser hemmenden Synapsen docken an die Empfangseinheit der Zielzelle an, die Dendriten. Welche Wirkung diese hemmenden Synapsen jedoch genau haben und wie präzise sie agieren, war bislang nicht erforscht.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung in den Dendriten anderer Zellen entscheidend beeinflussen. Die Neurobiologen untersuchten den Einfluss der dendritischen Hemmung auf Nervenzellen im Hippocampus, einem Gehirnbereich, in dem unter anderem Kurzzeit- in Langzeiterinnerungen umgewandelt werden.

Mit einer fein abgestimmten Kombination verschiedener Methoden konnten die Forscher durch das Mikroskop beobachten, wie schon einzelne hemmende Synapsen die Stärke und Ausbreitung eines Signals in der gehemmten Nervenzelle erheblich veränderten. Die Ergebnisse zeigen, dass Nervenzellsignale durch hemmende Synapsen mit einer Präzision von wenigen Millisekunden und Mikrometern in ihrer Amplitude reguliert werden können.

Es war bekannt, dass hemmende Nervenzellen eine sehr grundlegende Funktion im Gehirn erfüllen. "Dass aber bereits einzelne hemmende Synapsen eine wichtige Rolle spielen und eine so präzise Wirkung haben, hat uns richtig fasziniert", erklärt Fiona Müllner, die Erstautorin der gerade erschienenen Studie.

Aufbauend auf ihre Ergebnisse konnten die Wissenschaftler mit Hilfe eines Modells zeigen, wie einzelne hemmende Synapsen sogar die synaptische Plastizität, die Grundlage für Lernen und Gedächtnis, kontrollieren könnten. "Uns interessiert jetzt natürlich ganz besonders, welche Einflüsse eine so präzise Hemmung auf die Speicherung von Information im Nervensystem hat ", fügt Tobias Bonhoeffer hinzu, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie die Grundlagen der synaptischen Plastizität untersucht.

ORIGINALVERÖFFENTLICHUNG
Fiona Müllner, Corette Wierenga, Tobias Bonhoeffer
Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time
Neuron, 5. August 2015

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Tobias Bonhoeffer
Abteilung "Synapsen – Schaltkreise – Plastizität"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3751
Email: office.bonhoeffer@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/bonhoeffer - Webseite der Abteilung von Prof. Tobias Bonhoeffer am Max-Planck-Institut für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HZDR-Forscher entwickeln Tarnkappen-Technologie für leuchtende Nanopartikel
13.11.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Chip mit echten Blutgefäßen
13.11.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics