Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Effekte bakterieller Eiskeime

25.04.2016

Bakterien fördern die Bildung von Eiskristallen, indem sie die Ordnung und Dynamik von Wassermolekülen an ihrer Oberfläche verändern.

Der Gefrierpunkt von Wasser ist alles andere als eine eindeutige Sache. Kleine Tröpfchen aus reinstem Wasser etwa erstarren erst bei minus 37 Grad Celsius zu Eis. Damit sich knapp unter Null Grad Celsius bereits Eiskristalle bilden, sind Kristallisationskeime wie etwa Bakterien nötig, die auf ihrer Oberfläche eisbildende Proteine aufweisen.


Eiskristalle: Max-Planck-Forscher haben herausgefunden, dass bestimmte Bakterien den Ordnungszustand und die Dynamik von Wassermolekülen in Wassertröpfchen beeinflussen können.

Grafik und Montage: MPI für Polymerforschung, Foto: R. Eckl

Den molekularen Mechanismus, über den die Proteine Wassermoleküle erstarren lassen, haben nun Forscher der Max-Planck-Institute für Chemie und für Polymerforschung aufgeklärt. Demnach erzeugen die Proteine geordnete Strukturen im Wasser und leiten Wärme ab. Die Erkenntnisse helfen nicht nur, die Bedingungen besser zu verstehen, unter denen Frostschäden an Pflanzen entstehen.

Da die Bakterien auch in der Atmosphäre vorkommen, wo sie ebenfalls die Bildung von Eiskristallen fördern, spielen sie auch eine Rolle bei der Entstehung von Wolken und Niederschlag – einem großen Unsicherheitsfaktor in Wetter- und Klimavorhersagen.

Bei Null Grad Celsius gefriert ein Wassertropfen nie. Bei der Temperatur, die landläufig als Gefrierpunkt bekannt ist, bildet Wasser nur Eis, wenn es in mit größeren Oberflächen Kontakt hat, in denen sich viele und große eisbildende Stellen befinden – etwa in einem Gefäß oder einem See. In Wassertropfen fördern Bakterien gezielt die Eisbildung, und zwar durch bestimmte Proteinmoleküle an ihrer Oberfläche, was bereits seit längerem bekannt ist. Weitgehend unverstanden waren bisher jedoch die molekularen Mechanismen, die dazu führen.

Max-Planck-Forscher haben nun aufgedeckt, was genau an der Bakterienoberfläche zwischen den Wasser- und den Proteinmolekülen geschieht. Ein Team um Tobias Weidner, Leiter einer Forschungsgruppe am Max-Planck-Institut für Polymerforschung und Janine Fröhlich-Nowoisky, die eine Arbeitsgruppe am Max-Planck-Institut für Chemie leitet, zeigen, auf welche Weise eisaktive Bakterien – so der Fachbegriff – den Ordnungszustand und die Dynamik von Wassermolekülen beeinflussen.

Wie die Mainzer Forscher gemeinsam mit amerikanischen Kollegen in der neuesten Ausgabe des Wissenschaftsmagazins Science Advances berichten, erzeugt die Wechselwirkung mit bestimmten Aminosäuresequenzen der Proteinmoleküle im Wasser Bereiche mit erhöhter Ordnung und stärkeren Wasserstoffbrückenbindungen. Zudem nehmen die Proteine Wärmeenergie aus dem Wasser auf und leiten sie weiter in das Bakterium. Dadurch können sich die Wassermoleküle schneller zu einem Eiskristall zusammen lagern.

Eisaktive Bakterien sind für Wissenschaftler aus mehrfacher Sicht von großem Interesse. Zum einen können sie Frostschäden an der Oberfläche von Pflanzen verursachen. Zum anderen können die Bakterien vom Wind in die Luft getragen werden. Dort wirken sie nicht nur als Kristallisations-, sondern auch als Kondensationskeime, sodass sie die Bildung von Schnee und Regen auslösen und so den Wasserkreislauf beeinflussen können.

Die Verbreitung von eisaktiven Bakterien und anderen Bioaerosolpartikeln in der Atmosphäre und ihr Einfluss auf die Bildung von Wolken und Niederschlag ist ein besonders vieldiskutiertes Thema in der aktuellen Klima- und Erdsystemforschung. Erkenntnisse, worauf die eisbildende Wirkung der Bakterien beruht, könnten helfen, ihre Rolle im Klimasystem besser zu verstehen.

Um zu verstehen, wie die Eiskristallbildung durch bakterielle Proteine angeregt wird, konzentrierten sich die Mainzer Forscher auf das eisaktive Bakterium Pseudomonas syringae. Dieses Bakterium löst schon bei minus zwei Grad Celsius die Eisbildung in Wassertropfen aus.

Zum Vergleich: Enthalten Wassertropfen nur Mineralstaub oder Ruß als Kondensationskeime für die Eiskristallbildung, setzt der Gefrierprozess erst ab Temperaturen von etwa minus 15 Grad Celsius ein. In abgetöteter Form wird Pseudomonas syringae deshalb bereits als „Snomax“ kommerziell zur Produktion von Kunstschnee eingesetzt.

Für ihre Untersuchungen setzten die Wissenschaftler die sogenannte Summenfrequenzspektroskopie ein. Diese ermöglicht es, mittels Laserstrahlen gezielt die Wassermoleküle an der Bakterien- beziehungsweise Proteinoberfläche zu untersuchen.

Dank der neuen Ergebnisse scheint es nun möglich, die Eisbildungsmechanismen der Bakterien zu imitieren und im Labor künstlich nachzubauen und so für eine Reihe weiterer Anwendungen nutzbar zu machen. „In Zukunft wäre es nun denkbar, künstliche, nanostrukturierte Oberflächen und Partikel herzustellen, mit deren Hilfe die Bildung von Eis gezielt beeinflusst und kontrolliert werden könnte“, sagt Tobias Weidner.

Angespornt durch die positiven ersten Ergebnisse werden die beiden Max-Planck-Forschergruppen ihre Zusammenarbeit ausweiten. „Wir planen, zum einen die bakteriellen Eisproteine isoliert zu untersuchen. Derzeit finden die Untersuchungen noch an ganzen Bakterienzellen und Zellfragmenten statt. Zum anderen möchten wir die Analysen auf pilzliche Eiskeime erweitern“, erklärt Janine Fröhlich-Nowoisky, deren Arbeitsgruppe auf die Charakterisierung biologischer Eiskeime spezialisiert ist und über eine umfassende Kultursammlung, nicht nur von eisaktiven Bakterien, sondern auch von eisaktiven Pilzen, verfügt.

Presse- und Öffentlichkeitsarbeit | Max-Planck-Institut für Polymerforschung
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics