Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Effekte bakterieller Eiskeime

25.04.2016

Bakterien fördern die Bildung von Eiskristallen, indem sie die Ordnung und Dynamik von Wassermolekülen an ihrer Oberfläche verändern.

Der Gefrierpunkt von Wasser ist alles andere als eine eindeutige Sache. Kleine Tröpfchen aus reinstem Wasser etwa erstarren erst bei minus 37 Grad Celsius zu Eis. Damit sich knapp unter Null Grad Celsius bereits Eiskristalle bilden, sind Kristallisationskeime wie etwa Bakterien nötig, die auf ihrer Oberfläche eisbildende Proteine aufweisen.


Eiskristalle: Max-Planck-Forscher haben herausgefunden, dass bestimmte Bakterien den Ordnungszustand und die Dynamik von Wassermolekülen in Wassertröpfchen beeinflussen können.

Grafik und Montage: MPI für Polymerforschung, Foto: R. Eckl

Den molekularen Mechanismus, über den die Proteine Wassermoleküle erstarren lassen, haben nun Forscher der Max-Planck-Institute für Chemie und für Polymerforschung aufgeklärt. Demnach erzeugen die Proteine geordnete Strukturen im Wasser und leiten Wärme ab. Die Erkenntnisse helfen nicht nur, die Bedingungen besser zu verstehen, unter denen Frostschäden an Pflanzen entstehen.

Da die Bakterien auch in der Atmosphäre vorkommen, wo sie ebenfalls die Bildung von Eiskristallen fördern, spielen sie auch eine Rolle bei der Entstehung von Wolken und Niederschlag – einem großen Unsicherheitsfaktor in Wetter- und Klimavorhersagen.

Bei Null Grad Celsius gefriert ein Wassertropfen nie. Bei der Temperatur, die landläufig als Gefrierpunkt bekannt ist, bildet Wasser nur Eis, wenn es in mit größeren Oberflächen Kontakt hat, in denen sich viele und große eisbildende Stellen befinden – etwa in einem Gefäß oder einem See. In Wassertropfen fördern Bakterien gezielt die Eisbildung, und zwar durch bestimmte Proteinmoleküle an ihrer Oberfläche, was bereits seit längerem bekannt ist. Weitgehend unverstanden waren bisher jedoch die molekularen Mechanismen, die dazu führen.

Max-Planck-Forscher haben nun aufgedeckt, was genau an der Bakterienoberfläche zwischen den Wasser- und den Proteinmolekülen geschieht. Ein Team um Tobias Weidner, Leiter einer Forschungsgruppe am Max-Planck-Institut für Polymerforschung und Janine Fröhlich-Nowoisky, die eine Arbeitsgruppe am Max-Planck-Institut für Chemie leitet, zeigen, auf welche Weise eisaktive Bakterien – so der Fachbegriff – den Ordnungszustand und die Dynamik von Wassermolekülen beeinflussen.

Wie die Mainzer Forscher gemeinsam mit amerikanischen Kollegen in der neuesten Ausgabe des Wissenschaftsmagazins Science Advances berichten, erzeugt die Wechselwirkung mit bestimmten Aminosäuresequenzen der Proteinmoleküle im Wasser Bereiche mit erhöhter Ordnung und stärkeren Wasserstoffbrückenbindungen. Zudem nehmen die Proteine Wärmeenergie aus dem Wasser auf und leiten sie weiter in das Bakterium. Dadurch können sich die Wassermoleküle schneller zu einem Eiskristall zusammen lagern.

Eisaktive Bakterien sind für Wissenschaftler aus mehrfacher Sicht von großem Interesse. Zum einen können sie Frostschäden an der Oberfläche von Pflanzen verursachen. Zum anderen können die Bakterien vom Wind in die Luft getragen werden. Dort wirken sie nicht nur als Kristallisations-, sondern auch als Kondensationskeime, sodass sie die Bildung von Schnee und Regen auslösen und so den Wasserkreislauf beeinflussen können.

Die Verbreitung von eisaktiven Bakterien und anderen Bioaerosolpartikeln in der Atmosphäre und ihr Einfluss auf die Bildung von Wolken und Niederschlag ist ein besonders vieldiskutiertes Thema in der aktuellen Klima- und Erdsystemforschung. Erkenntnisse, worauf die eisbildende Wirkung der Bakterien beruht, könnten helfen, ihre Rolle im Klimasystem besser zu verstehen.

Um zu verstehen, wie die Eiskristallbildung durch bakterielle Proteine angeregt wird, konzentrierten sich die Mainzer Forscher auf das eisaktive Bakterium Pseudomonas syringae. Dieses Bakterium löst schon bei minus zwei Grad Celsius die Eisbildung in Wassertropfen aus.

Zum Vergleich: Enthalten Wassertropfen nur Mineralstaub oder Ruß als Kondensationskeime für die Eiskristallbildung, setzt der Gefrierprozess erst ab Temperaturen von etwa minus 15 Grad Celsius ein. In abgetöteter Form wird Pseudomonas syringae deshalb bereits als „Snomax“ kommerziell zur Produktion von Kunstschnee eingesetzt.

Für ihre Untersuchungen setzten die Wissenschaftler die sogenannte Summenfrequenzspektroskopie ein. Diese ermöglicht es, mittels Laserstrahlen gezielt die Wassermoleküle an der Bakterien- beziehungsweise Proteinoberfläche zu untersuchen.

Dank der neuen Ergebnisse scheint es nun möglich, die Eisbildungsmechanismen der Bakterien zu imitieren und im Labor künstlich nachzubauen und so für eine Reihe weiterer Anwendungen nutzbar zu machen. „In Zukunft wäre es nun denkbar, künstliche, nanostrukturierte Oberflächen und Partikel herzustellen, mit deren Hilfe die Bildung von Eis gezielt beeinflusst und kontrolliert werden könnte“, sagt Tobias Weidner.

Angespornt durch die positiven ersten Ergebnisse werden die beiden Max-Planck-Forschergruppen ihre Zusammenarbeit ausweiten. „Wir planen, zum einen die bakteriellen Eisproteine isoliert zu untersuchen. Derzeit finden die Untersuchungen noch an ganzen Bakterienzellen und Zellfragmenten statt. Zum anderen möchten wir die Analysen auf pilzliche Eiskeime erweitern“, erklärt Janine Fröhlich-Nowoisky, deren Arbeitsgruppe auf die Charakterisierung biologischer Eiskeime spezialisiert ist und über eine umfassende Kultursammlung, nicht nur von eisaktiven Bakterien, sondern auch von eisaktiven Pilzen, verfügt.

Presse- und Öffentlichkeitsarbeit | Max-Planck-Institut für Polymerforschung
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hepatitis C-Viren erfolgreich ausschalten
25.03.2019 | Helmholtz-Zentrum für Infektionsforschung

nachricht Molekulares Doping
25.03.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Innovationen ermöglichen fast vollständige Dekarbonisierung des Industriesektors

25.03.2019 | Ökologie Umwelt- Naturschutz

Hepatitis C-Viren erfolgreich ausschalten

25.03.2019 | Biowissenschaften Chemie

Feuerwehrmaske mit Datenbrille ermöglicht Navigation in verrauchten Räumen

25.03.2019 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics