Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Designer-Proteine falten DNA

24.03.2017

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian Praetorius vom Lehrstuhl für Experimentelle Biophysik ist sie aber auch ein exzellentes Baumaterial für Nanostrukturen. Schon länger etabliert ist in diesem Zusammenhang das sogenannte DNA-Origami, bei dem DNA gefaltet wird, um damit dreidimensionale Formen zu erzeugen.


Doppelsträngige DNA kann mithilfe von Proteinen in dreidimensionale Formen gefaltet werden.

Foto: Ella Maru Studio & Dietz Lab / TUM

Doch bei dieser Methode gibt es Einschränkungen, erklärt Dietz. Denn die „Bauarbeiten“ finden immer außerhalb des biologischen Systems statt und Teile der Komponenten müssen chemisch synthetisiert werden. „Es ist ziemlich schwierig, benutzerdefinierte Strukturen in der Größenskala von 10 bis 100 Nanometern innerhalb einer Zelle zu schaffen.“

Mit der neu entwickelten Technik ist es den Forschern nun möglich, doppelsträngige DNA mithilfe von Proteinen in gewünschte dreidimensionale Formen zu falten, wobei sowohl die DNA als auch die dafür nötigen Proteine genetisch codiert und in Zellen produziert werden können.

Protein wirkt als Tackerklammer

Der Schlüssel für die Methode sind speziell entworfene „Klammer-Proteine“, die auf den sogenannten TAL-Effektoren basieren. TAL-Effektoren werden in der Natur von bestimmten Bakterien produziert, die Pflanzen infizieren, und haben die Fähigkeit, sich an spezifische Sequenzen in der Pflanzen-DNA zu heften und damit unter anderem Abwehrmechanismen der Pflanzen lahmzulegen.

„Wir haben Varianten der TAL-Proteine konstruiert, die zwei getrennte durch den Designer definierte Ziel-Sequenzen auf der DNA erkennen und quasi zusammentackern können“, sagt Dietz. „Das war genau die Eigenschaft, die wir für unsere Klammer-Proteine gebraucht haben.“

Die zweite Komponente des Systems ist ein DNA-Doppelstrang, der mehrere Bindesequenzen enthält, die von einem Satz verschiedener Klammer-Proteine erkannt und verknüpft werden können. „Im einfachsten Fall kann man eine Schleife erzeugen, indem man zwei Punkte miteinander verbindet“, erklärt Praetorius. „Wenn mehrere dieser Verknüpfungspunkte in der DNA vorhanden sind, ist es möglich, auch komplexere Formen zu bauen.“

Ein wesentlicher Teil der Arbeit der Forscher lag daher darin, ein Regelwerk zu bestimmen, wie die Klammerproteine selber sowie die Verteilung der Bindesequenzen auf dem DNA Doppelstrang gestaltet sein müssen, um gewünschte Formen zu erzeugen.

Neue Werkzeuge für die Grundlagenforschung

Die Klammer-Proteine dienen darüber hinaus auch als Ankerpunkte für weitere Proteine: Durch eine Methode, die sich genetische Fusion nennt, können beliebige funktionelle Proteindomänen angeheftet werden. Die Hybridstrukturen aus DNA und Proteinen dienen damit als dreidimensionales Gerüst, mit denen die anderen Proteindomänen in eine bestimmte räumliche Position gebracht werden.

Alle Bausteine für die DNA-Protein Hybridstrukturen können von der Zelle selbst hergestellt werden und setzen sich dann eigenständig zusammen. Die Forscher konnten die Hybride in zellähnlicher Umgebung ausgehend von genetischer Information herstellen. „Die Wahrscheinlichkeit ist recht hoch, dass das auch in Zellen funktioniert“, sagt Dietz.

Die neue Methode eröffnet einen Weg, die räumliche Anordnung von Molekülen im lebenden System zu kontrollieren. Damit können grundlegende biologische Prozesse untersucht werden. Zum Beispiel wird vermutet, dass die räumliche Anordnung des Genoms einen Einfluss darauf hat, welche Gene abgelesen werden können und mit welcher Effizienz dies geschieht. Die gezielte Erzeugung von Schlaufen über TAL-DNA-Hybridstrukturen in genomischer DNA stellt ein Werkzeug zur Verfügung, mit dem solche Prozesse untersucht werden können.

Auch könnten eine Reihe von Proteinen innerhalb und außerhalb der Zelle in gewünschter Weise geometrisch positioniert werden um den Einfluss der räumlichen Nähe etwa auf die Informationsverarbeitung in der Zelle zu untersuchen. Die räumliche Nähe bestimmter Enzyme könnte auch Prozesse in der Biotechnologie effizienter machen. Schließlich wäre es auch denkbar Protein-DNA-Hybridstrukturen heranzuziehen, um zum Beispiel die Immunantwort von Zellen besser zu stimulieren, die von geometrischen Anordnungen von Antigenen abhängen kann.


Das Projekt wurde finanziert durch das Bundesministerium für Bildung und Forschung im Rahmen des ERANET SynBio Programms „BioOrigami“, sowie durch das Gottfried-Wilhelm-Leibniz Programm der DFG, und durch die Exzellenzcluster CIPSM und NIM.

Originalpublikation: F. Praetorius and H. Dietz, “Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes”; Science, (2017), doi 10.1126/science.aaf5488 (Cover article)

Bildmaterial:
https://mediatum.ub.tum.de/1353181

Kontakt:

Prof. Hendrik Dietz
Technische Universität München
+49 (0) 89 289-11615
dietz@tum.de
dietzlab.org

Florian Praetorius
Technische Universität München
+49 (89) 289 - 11622
florian.praetorius@mytum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics