Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schlüssel zur Proteinbindung - ungeordnet, aber ultraschnell

09.10.2015

Die Kommunikation in Zellen zwischen Zellkern und Zellplasma wird durch den dauerhaften Austausch von Tausenden von Signalmolekülen und Proteinen vermittelt. Bisher war unbekannt, warum dieser Proteinverkehr zugleich so schnell und doch exakt genug ist, um unerwünschte Moleküle an der Passage zu hindern. Durch eine Kombination von Computersimulationen und experimentellen Techniken haben Forscher aus Deutschland, Frankreich und England dieses Rätsel gelöst: Ein sehr bewegliches Protein kann an seinen Rezeptor innerhalb von Millardstel Sekunden binden. Die Arbeit unter der Leitung von Edward Lemke (EMBL), Frauke Gräter (HITS) und Martin Blackledge (IBS) wurde jetzt „Cell“ veröffentlicht.

Proteine können sich gegenseitig erkennen. Jedes einzelne verbindet sich sehr spezifisch nur mit wenigen der vielen verschiedenen Proteine in der lebenden Zelle - wie ein Schlüssel, der in ein Schlüsselloch passt.


Durch die ultraschnelle, aber zugleich gezielte Bindung rast der Rezeptor (gold) durch die mit ungeordneten Proteinen gefüllte Pore in den Zellkern, während unerwünschte Moleküle ferngehalten werden.

Bild: Mercadante /HITS

Aber was passiert, wenn der Schlüssel extrem beweglich ist, wie bei den sogenannten intrinsisch ungeordneten Proteinen (IDPs)? Die Forschungsgruppen unter der Leitung von Edward Lemke am European Molecular Biology Laboratory (EMBL) in Heidelberg, Frauke Gräter am Heidelberger Institut für Theoretische Studien (HITS) und Martin Blackledge am Institut de Biologie Structurale (IBS) in Frankreich gingen dieser Frage in einer stark interdisziplinären Zusammenarbeit nach.

Sie verknüpften dabei molekulare Simulationen, Fluoreszenz-Resonanzenergietransfer (FRET) von Einzelmolekülen, Nuklearmagnetresonanzverfahren (NMR), sogenannte „stopped flow“-Spektroskopie und Teilchenverfolgung in der Zelle (in-cell particle tracking) miteinander.

... mehr zu:
»EMBL »IBS »Moleküle »Oberfläche »Proteine »Zelle

Überraschenderweise fanden sie heraus, dass bewegliche, Spaghetti-artige Proteine von ihrem Bindungspartner gut erkannt werden können, vielleicht sogar besser als steife Proteinblöcke. Dabei binden sie sehr schnell, behalten aber trotzdem die hohe spezifische Genauigkeit bei, die die Zelle benötigt. Die Forscher vermuten, dass diese ungeordneten Moleküle in evolutionär höher entwickelten Organismen darum häufiger vorkommen.

Wissenschaftler hatten angenommen, dass ein IDP-„Schlüssel“, damit er in sein „Schlüsselloch“ passt, sich selbst umbaut, aber die Experimente im Lemke Lab ließen eine andere Erklärung zu. „Die Einzelmolekülexperimente am EMBL zeigten für diese Wechselwirkung zwischen Rezeptor und ungeordnetem Protein quasi nichts: Das Protein blieb in der Bindung mit dem Rezeptor genauso beweglich“, sagt Davide Mercadante (HITS).

Dieser Befund regte ihn dazu an, die gleiche Wechselwirkung am Computer zu untersuchen. Das überraschende Ergebnis: Die hohe Flexibilität des IDP hilft tatsächlich, in das „Schlüsselloch“ zu passen – in diesem Fall ein Transportrezeptor, der Proteine in den Zellkern befördert. Die Simulationen legten sogar nah, dass die Bindung ultraschnell sein würde, schneller als alle Verbindungen dieser Art, die bislang gefunden wurden. „Die Computerdaten deuteten darauf hin, dass wir einen neuen, ultraschnellen Bindungsmechanismus identifiziert hatten, aber wir brauchten drei Jahre, bis wir unsere Experimente so eingerichtet hatten, dass wir die Kinetik im Labor beweisen konnten“, erinnert sich Iker Valle Aramburu (EMBL). „Am Ende erzielten wir eine bemerkenswert perfekte Übereinstimmung.“

Die Ergebnisse helfen, ein langjähriges Paradox zu verstehen. „Damit eine Zelle lebensfähig bleibt, müssen sich Moleküle dauerhaft in den Zellkern und wieder hinaus bewegen“, sagt Edward Lemke (EMBL). „Unsere Erkenntnisse erklären das sogenannte Transportparadox – nämlich wie dieser Transport schnell, aber zur gleichen Zeit hochgenau sein kann, damit unerwünschte Moleküle die Schranke nicht überwinden können, die unser Genom schützt.“

Die neue Studie legt nahe, dass es viele sogenannte Bindungsstellen an der Oberfläche gibt, die eine hochreaktive Oberfläche schaffen. Dadurch kann der Schlüssel ultraschnell viele Schlösser erkennen und aufschließen, so dass die Rezeptoren im Eiltempo durch eine Pore gefüllt mit ungeordneten Proteinen rasen.

„Dies könnte ein neues Paradigma für die Erkennung von intrinsisch ungeordneten Proteinen sein“, sagt Frauke Gräter (HITS). Da dreißig bis fünfzig Prozent der Proteine in menschlichen Zellen ungeordnet sind, könnten die Forschungsergebnisse auch eine Erklärung dafür liefern, warum Informationen so schnell weitergeleitet werden – eine unerlässliche Voraussetzung für das Überleben der Zelle.
Weitere an der Studie beteiligte Forscher arbeiten am IBS Grenoble, Frankreich, und an der Cambridge University Großbritannien.

Die Publikation in “Cell”:
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors http://www.cell.com/cell/abstract/S0092-8674%2815%2901264-7
Sigrid Milles, Davide Mercadante, Iker Valle Aramburu, Malene Ringkjøbing Jensen, Niccolò Banterle, Christine Koehler, Swati Tyagi, Jane Clarke, Sarah L Shammas, Martin Blackledge, Frauke Gräter, Edward A Lemke
DOI: http://dx.doi.org/10.1016/j.cell.2015.09.047

Ansprechpartner für die Medien:
Dr. Peter Saueressig
Head of Communications
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533245
peter.saueressig@h-its.org
http://www.h-its.org
Twitter: @HITStudies

Sonia Furtado Neves
EMBL Press Officer & Deputy Head of Communications
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de
http://s.embl.org/press

Wissenschaftliche Ansprechpartner:
Dr. Frauke Gräter
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533267
frauke.graeter@h-its.org

Dr. Edward Lemke
Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, (EMBL)
Phone: +49-6221-387 8536
lemke@embl.de

Weitere Informationen:

http://www.h-its.org/mbm-aktuelles/in-cell-der-schlussel-zur-proteinbindung-unge... HITS-Pressemitteilung
http://www.cell.com/cell/abstract/S0092-8674%2815%2901264-7 Publikation in "Cell"

Dr. Peter Saueressig | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: EMBL IBS Moleküle Oberfläche Proteine Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem
24.05.2019 | Universität Leipzig

nachricht Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken
24.05.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics