Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der richtige Dreh für den perfekten Kristall

30.05.2016

Utl. Physiker entwickeln neue Methode der Kristallerzeugung

Egal ob in Metallkunde, Gemmologie (Edelsteinkunde) oder auch Elektrotechnik, die Anwendungsgebiete von Kristallen sind breit gefächert. Ein Team um Christos Likos von der Fakultät für Physik der Universität Wien hat nun in Zusammenarbeit mit dem National Institute of Standards and Technology (NIST, USA) und der Princeton University (USA) eine neue Methode entwickelt, die das Wachstum von großen, periodischen Kristallen verbessert. Die Ergebnisse dazu wurden aktuell im Fachmagazin ACS Nano publiziert.


Die Wissenschafter konnten zeigen, dass eine langreichweitige Ordnung durch die Verwendung einer Mischung von Kolloiden und polymerartigen Teilchen wiederhergestellt werden kann.

Copyright: Christos Likos Universität Wien

Kristalle sind Festkörper, deren mikroskopisch kleine Bausteine regelmäßig in einer periodischen Struktur angeordnet sind. Viele der Eigenschaften, die Kristalle so nützlich machen, basieren auf der detaillierten und strukturierten Anordnung ihrer Bestandteile.

Diese regelmäßige Kristallstruktur wirkt sich wiederum in hohem Maße auf das Zusammenspiel der einzelnen Bausteine aus. In molekularen und atomaren Kristallen ist die Kraft zwischen den Bausteinen von Natur aus vorgegeben. Die einzige Möglichkeit die Kristallstruktur umzuwandeln besteht entweder darin, die äußeren Bedingungen (Temperatur, Druck, etc.) zu verändern, oder die Partikel selbst auszutauschen.

Im Gegensatz dazu ist es möglich, im Bereich der Physik der Weichen Materie, in dem die Bausteine um ein Vielfaches größer und komplexer sind als Atome, Bausteine mit extrem anpassungsfähigen Eigenschaften zu konzipieren und anzufertigen.

Darauf basierend haben Wissenschafter unter großem Aufwand an der Synthese von Kolloiden gearbeitet, die selbst organisiert hochsymmetrische Strukturen mit den technologisch relevanten Eigenschaften bilden. Als Beispiel gelten spezielle Kristallgitter, die interessante optische Eigenschaften aufweisen – die so genannten Photonischen Kristalle.

Ein Beispiel für einen natürlichen Photonischen Kristall ist der Opal, dessen faszinierendes Farbenspiel auf die Art zurückzuführen ist, wie das Licht mit den kleinen Strukturen der regelmäßig angeordneten, kolloidalen Teilchen interagiert. Das farbenprächtige Schillern des Edelopals ist auf die Präsenz einer Vielzahl kleiner Kristalle, so genannter Kristallite, zurückzuführen, die sich mit unterschiedlicher Orientierung anordnen.

"Zusätzlich ist die Anordnung in den kolloidalen Kristallen oft durch Polymorphologie gestört: Verschiedenste Strukturen sind durch vergleichbare thermodynamische Stabilität charakterisiert, die es erschweren eine bestimmte Form absichtlich zu erzeugen", erklärt Christos Likos von der Fakultät für Physik der Universität Wien.

Das daraus resultierende Fehlen der weitreichenden Anordnungen ist für viele Anwendungen von Nachteil. Entsprechend haben sich die Wissenschafter zur Aufgabe gemacht, Strategien zu entwickeln, die das Wachsen von großen, monokristallinen Exemplaren verbessern. Mittels Computersimulationen ist es nun gelungen eine neue Methode zu entwickeln, die es ermöglicht, technologisch relevante offene Kristalle zu bilden, die nicht polymorph sind.

"Das System kristallisiert spontan in einer Mischung von Kristallen. Die Kolloide fügen sich dabei so zusammen, dass die konkurrierenden Strukturen unterschiedliche Hohlraumverteilungen aufweisen. Wir nutzen das aus, indem wir die Größe von zusätzlich hinzugefügten Polymeren so anpassen, dass diese einzig und allein mit der Leerraumsymmetrie des gewünschten Kristalls interagieren und sich gegen seine Konkurrenten stabilisieren", so Lise-Meitner-Stipendiat Lorenzo Rovigatti, Mitglied der Gruppe um Christos Likos.

Die Ergebnisse des Forschungsteams dienen nicht nur dazu, Alternativen zu bereits existierenden Ansätzen aufzuzeigen, sondern auch um in naher Zukunft die experimentelle Umsetzung von weitreichend geordneten offenen kolloidalen Kristallen zu ermöglichen.

Publikation in "ACS-Nano"
Nathan A. Mahynski, Lorenzo Rovigatti, Christos N. Likos, and Athanassios Z. Panagiotopoulos
DOI 10.1021/acsnano.6b01854

Das Projekt wurde vom Österreichischen Wissenschaftsfonds (FWF) durch das Lise-Meitner Stipendium M 1650-N27 unterstützt.

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Ing. Dr. Christos Likos
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-732 30
M +43-664-60277-732 30
christos.likos@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 93.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle
19.06.2019 | Ruhr-Universität Bochum

nachricht Wie sich Bakterien gegen Plasmabehandlung schützen
19.06.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics