Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der richtige Dreh für den perfekten Kristall

30.05.2016

Utl. Physiker entwickeln neue Methode der Kristallerzeugung

Egal ob in Metallkunde, Gemmologie (Edelsteinkunde) oder auch Elektrotechnik, die Anwendungsgebiete von Kristallen sind breit gefächert. Ein Team um Christos Likos von der Fakultät für Physik der Universität Wien hat nun in Zusammenarbeit mit dem National Institute of Standards and Technology (NIST, USA) und der Princeton University (USA) eine neue Methode entwickelt, die das Wachstum von großen, periodischen Kristallen verbessert. Die Ergebnisse dazu wurden aktuell im Fachmagazin ACS Nano publiziert.


Die Wissenschafter konnten zeigen, dass eine langreichweitige Ordnung durch die Verwendung einer Mischung von Kolloiden und polymerartigen Teilchen wiederhergestellt werden kann.

Copyright: Christos Likos Universität Wien

Kristalle sind Festkörper, deren mikroskopisch kleine Bausteine regelmäßig in einer periodischen Struktur angeordnet sind. Viele der Eigenschaften, die Kristalle so nützlich machen, basieren auf der detaillierten und strukturierten Anordnung ihrer Bestandteile.

Diese regelmäßige Kristallstruktur wirkt sich wiederum in hohem Maße auf das Zusammenspiel der einzelnen Bausteine aus. In molekularen und atomaren Kristallen ist die Kraft zwischen den Bausteinen von Natur aus vorgegeben. Die einzige Möglichkeit die Kristallstruktur umzuwandeln besteht entweder darin, die äußeren Bedingungen (Temperatur, Druck, etc.) zu verändern, oder die Partikel selbst auszutauschen.

Im Gegensatz dazu ist es möglich, im Bereich der Physik der Weichen Materie, in dem die Bausteine um ein Vielfaches größer und komplexer sind als Atome, Bausteine mit extrem anpassungsfähigen Eigenschaften zu konzipieren und anzufertigen.

Darauf basierend haben Wissenschafter unter großem Aufwand an der Synthese von Kolloiden gearbeitet, die selbst organisiert hochsymmetrische Strukturen mit den technologisch relevanten Eigenschaften bilden. Als Beispiel gelten spezielle Kristallgitter, die interessante optische Eigenschaften aufweisen – die so genannten Photonischen Kristalle.

Ein Beispiel für einen natürlichen Photonischen Kristall ist der Opal, dessen faszinierendes Farbenspiel auf die Art zurückzuführen ist, wie das Licht mit den kleinen Strukturen der regelmäßig angeordneten, kolloidalen Teilchen interagiert. Das farbenprächtige Schillern des Edelopals ist auf die Präsenz einer Vielzahl kleiner Kristalle, so genannter Kristallite, zurückzuführen, die sich mit unterschiedlicher Orientierung anordnen.

"Zusätzlich ist die Anordnung in den kolloidalen Kristallen oft durch Polymorphologie gestört: Verschiedenste Strukturen sind durch vergleichbare thermodynamische Stabilität charakterisiert, die es erschweren eine bestimmte Form absichtlich zu erzeugen", erklärt Christos Likos von der Fakultät für Physik der Universität Wien.

Das daraus resultierende Fehlen der weitreichenden Anordnungen ist für viele Anwendungen von Nachteil. Entsprechend haben sich die Wissenschafter zur Aufgabe gemacht, Strategien zu entwickeln, die das Wachsen von großen, monokristallinen Exemplaren verbessern. Mittels Computersimulationen ist es nun gelungen eine neue Methode zu entwickeln, die es ermöglicht, technologisch relevante offene Kristalle zu bilden, die nicht polymorph sind.

"Das System kristallisiert spontan in einer Mischung von Kristallen. Die Kolloide fügen sich dabei so zusammen, dass die konkurrierenden Strukturen unterschiedliche Hohlraumverteilungen aufweisen. Wir nutzen das aus, indem wir die Größe von zusätzlich hinzugefügten Polymeren so anpassen, dass diese einzig und allein mit der Leerraumsymmetrie des gewünschten Kristalls interagieren und sich gegen seine Konkurrenten stabilisieren", so Lise-Meitner-Stipendiat Lorenzo Rovigatti, Mitglied der Gruppe um Christos Likos.

Die Ergebnisse des Forschungsteams dienen nicht nur dazu, Alternativen zu bereits existierenden Ansätzen aufzuzeigen, sondern auch um in naher Zukunft die experimentelle Umsetzung von weitreichend geordneten offenen kolloidalen Kristallen zu ermöglichen.

Publikation in "ACS-Nano"
Nathan A. Mahynski, Lorenzo Rovigatti, Christos N. Likos, and Athanassios Z. Panagiotopoulos
DOI 10.1021/acsnano.6b01854

Das Projekt wurde vom Österreichischen Wissenschaftsfonds (FWF) durch das Lise-Meitner Stipendium M 1650-N27 unterstützt.

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Ing. Dr. Christos Likos
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-732 30
M +43-664-60277-732 30
christos.likos@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 93.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Minutiöse Einblicke in das zelluläre Geschehen
24.01.2020 | Goethe-Universität Frankfurt am Main

nachricht Forscher entdecken Impfstoff zur Stärkung des Immunsystems von Pflanzen
24.01.2020 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Minutiöse Einblicke in das zelluläre Geschehen

24.01.2020 | Biowissenschaften Chemie

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungsnachrichten

Ein ultraschnelles Mikroskop für die Quantenwelt

24.01.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics