Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Wachstum neuer Nervenzellen wird streng reguliert

08.08.2016

Die Entstehung neuer Nervenzellen im Gehirn wird äußerst strikt reguliert. In einer aktuellen Studie der Universität Bonn und des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) wurde nun ein Schlüsselmechanismus dieser Regulation identifiziert. Die Erkenntnisse eröffnen die Möglichkeit, die Gewinnung von Nervenzellen aus Stammzellen genau zu steuern. Auch für die Behandlung von Hirntumoren ergeben sich eventuell neue Perspektiven. Die Studie wird am 9. August in der Zeitschrift „Stem Cell Reports“ veröffentlicht.

Schon wenige Tage nach Befruchtung der Eizelle beginnt im werdenden Kind die Entwicklung des Gehirns. Bis zur Geburt bilden sich hier im Schnitt jede Minute rund 250.000 neue Nervenzellen. Wenn der Säugling das Licht der Welt erblickt, warten in seinem Kopf rund 100 Milliarden dieser Neuronen auf Input.


Das Mikroskopie-Bild zeigt humane neurale Stammzellen, bei der durch eine so genannte Immunfluoreszenzfärbung stammzelltypische Proteine farbig markiert wurden.

© AG Brüstle, Universität Bonn


Während der embryonalen Entwicklung müssen neuralen Stammzellen kontrolliert von der Zellvermehrung (Proliferation) in die Ausreifung (Differenzierung) übergehen.

© AG Brüstle, Universität Bonn

Diese enorme Menge an Nervenzellen stammt von einigen wenigen Vorläuferzellen ab, den neuralen Stammzellen. Diese müssen sich zunächst vermehren, um genügend Ausgangszellen zu bilden. Nach und nach schlägt dann ein Teil der Zellen einen anderen Weg ein und beginnt, in die gewebespezifischen Zellen des Gehirns (Neurone und Gliazellen) auszureifen.

Der Übergang zwischen Zellvermehrung und Ausreifung muss dabei genau austariert werden: Eine Veränderung des Gleichgewichtes hätte fatale Folgen und könnte zum Beispiel die Entstehung von Gehirntumoren auslösen. Um dies zu verhindern, wird das Schicksal der neuralen Stammzellen augenscheinlich äußerst strikt reguliert. Die Bonner Wissenschaftler haben nun einen dieser Regulationsmechanismen entschlüsselt.

Regelkreis für die Nervenproduktion

Für ihre Experimente nutzten sie neurale Stammzellen, aus denen sich menschliche Nervenzellen erzeugen lassen. „Wir konnten zeigen, dass an der Regulation dieser Zellen zwei verschiedene Komponenten beteiligt sind“, erklärt Dr. Laura Stappert vom Institut für Rekonstruktive Neurobiologie der Universität Bonn. Beide Komponenten kontrollieren sich quasi gegenseitig. Sie bilden so einen Regelkreis, der die Stammzell-Aktivität während der Gehirnentwicklung bis ins Feinste austariert.

Der eine Akteur in diesem Regelkreis ist der so genannte Notch-Signalweg. Er sorgt dafür, dass sich die Stammzellen munter vermehren. Gleichzeitig verhindert er, dass sich die Zellen spezialisieren, also in Neuronen oder Gliazellen umwandeln. Sie verbleiben in ihrem unreifen Zustand.

Gegenspieler des Notch-Weges ist ein Molekül mit dem kryptischen Namen miR-9/9*. Dieses unterbindet die Teilung der Stammzellen. Stattdessen sorgt es dafür, dass sie den Karrierepfad in Richtung Nervenzellen einschlagen. Zugleich hemmt miR-9/9* den Notch-Signalweg.

MiR-9/9* steht also für die Ausreifung und Differenzierung von Stammzellen, Notch für ihre Vermehrung. „Interessanterweise bewirkt Notch zusätzlich noch eine vermehrte Produktion von miR-9/9*“, erläutert Dr. Beate Roese-Koerner, die gemeinsam mit Stappert Erstautorin der Studie ist: „Notch erzeugt also seinen eigenen Hemmstoff.“

„Dieser Mechanismus verhindert augenscheinlich, dass sich die Stammzellen zu schnell teilen: Jedem Tritt aufs Gaspedal folgt direkt ein Tritt auf die Bremse“, ergänzt Professor Dr. Oliver Brüstle, Direktor des Instituts für Rekonstruktive Neurobiologie. Möglicherweise eignet sich miR-9/9* daher auch, um das Wachstum von Tumoren zu unterbinden. Die Forscher wollen diese These nun weiter untersuchen.

Die Bonner Wissenschaftler haben sich auf die Gewinnung von Nervenzellen aus Stammzellen spezialisiert. Sie setzen diese für den Zellersatz im Gehirn ein. Dazu müssen sie genau wissen, auf welche Weise der Ausreifungsprozess kontrolliert wird. Neu identifizierte Regulationsfaktoren wandern direkt in die Werkzeugkiste der Forscher, da sie noch mehr Kontrolle über die Zellen erlauben. Die neuen Erkenntnisse sind in diesem Zusammenhang von großer Relevanz.

Publikation: Roese-Koerner et al., Reciprocal Regulation between Bifunctional miR-9/9* and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation, Stem Cell Reports (2016), http://dx.doi.org/10.1016/j.stemcr.2016.06.008

Kontakt:
Institut für Rekonstruktive Neurobiologie der Universität Bonn
Dr. Laura Stappert
Telefon: 0228/6885-533
E-Mail: laurastappert@uni-bonn.de

Prof. Dr. Oliver Brüstle
Telefon: 0228/6885-500
E-Mail: r.neuro@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics