Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn chemische Analytik nach Rosen duftet

18.09.2008
Wissenschaftler des Julius Kühn-Instituts (JKI) untersuchten mittels Raman-Spektroskopie Rosenblüten-Extrakte, Rosenöl sowie Rosenwasser und geben der Parfümerie- und Aromaindustrie eine effiziente Methode zur schnellen Qualitätskontrolle an die Hand.

Das aus den Blütenblättern der "Damaszener-Rose" (Rosa damascena) gewonnene Rosenöl ist das teuerste ätherische Öl der Welt. Aus drei Tonnen Rosenblüten lässt sich ca. ein Liter Rosenöl destillieren. Im Großhandel kostet ein Kilogramm echtes bulgarisches Rosenöl (rosa damascens) über 5000 Euro.

Angesichts solcher Preise ist es wichtig, rasch überprüfen zu können, ob die Qualität des Naturproduktes stimmt und man nicht gepanschte Ware eingekauft hat. Hilfe für Hersteller von Riech- und Aromastoffen liefert hierbei die analytische Chemie. Die Damaszener Rose verdankt ihren betörenden Duft insbesondere dem Phenylethylalkohol.

Der Gehalt dieser Hauptkomponente sowie weiterer Nebenkomponenten können als Indikatoren für die Reinheit von Rosenöl herangezogen werden. Wissenschaftler des Julius Kühn-Instituts (JKI) in Quedlinburg untersuchten mittels Raman-Spektroskopie die Zusammensetzung von Rosenextrakten (konkretes und absolutes Rosenöl), von durch Wasserdampfdestillation erhaltenem Rosenöl sowie dem hierbei als Nebenprodukt anfallenden Rosenwasser.

"Bisher wurde zur Qualitätskontrolle meist Gaschromatographie in Verbindung mit Massenspektrometrie benutzt", erklärt Prof. Dr. Hartwig Schulz vom JKI. Diese Analyse ist jedoch sehr zeitaufwändig. Die genauen Gehalte einzelner Duftkomponenten können teilweise nur unzureichend erfasst werden und die in den Rosenölen enthaltenen, nichtflüchtigen Substanzen sind kaum nachzuweisen. Die Wissenschaftler suchten eine neue verlässlichere Methode. Ihre Antwort auf das Problem ist die Raman-Spektroskopie, kombiniert mit neuen chemometrischen Auswerte-Algorithmen. "Dabei dienten uns Proben mit verschiedenen Gehalten an Phenylethylalkohol als Standard, mit denen wir dann die jeweiligen unbekannten Gehalte in den Naturstoffen erfolgreich bestimmen konnten", erklärt Schulz das Vorgehen. Die Raman-Spektroskopie hat einen weiteren entscheidenden Vorteil, dass auch ein hoher Wassergehalt der Probe das Ergebnis nicht beeinträchtigt. "Das heißt, man muss die Proben vor der spektroskopischen Untersuchung nicht speziell aufarbeiten, sondern kann auch Produkte wie Rosenwasser direkt vermessen", verdeutlicht Schulz. Diese methodische Neuerung stelle eine zusätzliche Option für die Qualitätskontrolle von Rosenblüten-Extrakten und Rosenöl dar. Sie lässt sich prinzipiell auch auf ätherische Öle anderer Pflanzenarten übertragen, so der Ausblick des JKI-Chemikers.

Die Ergebnisse wurden in der vergangenen Woche (7.-10.9.) anlässlich des 39. International Symposium on Essential Oils (ISEO 2008) in Quedlinburg vorgestellt.

Ihr Ansprechpartner vor Ort:
Prof. Dr. Hartwig Schulz
Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz
Julius Kühn-Institut - Bundesforschungsinstitut für Kulturpflanzen (JKI)
Erwin-Baur-Str. 27, 06484 Quedlinburg
Tel: 03946 / 47-301
E-Mail: hartwig.schulz@jki.bund.de
Hintergrundinformation zu Ölrosenkulturen und Ölgewinnung:
Ölrosenkulturen gibt es z.B. in Moldawien, in der Kaukasus-Region, auf der Krim, in Grusinien, in der Ukraine, in der Türkei, in Bulgarien, in Marokko und in Indien. In Frankreich ist die Produktion von Rosenprodukten vor allem im Parfümerie-Zentrum um die Stadt Grasse angesiedelt. Rosenöl wird hauptsächlich in der Türkei, in Bulgarien und in Südfrankreich erzeugt.

Die Ernte der Rosenblüten beginnt in Bulgarien z.B. um den 20. Mai und endet Mitte Juni. Die Blüten müssen in den frühen Morgenstunden gepflückt werden. Die Ausbeute ist gering: Sie beträgt lediglich 0,02 bis 0,05 Prozent des eingesetzten Pflanzenmaterials. Die Haupterntezeit der Rosenblüten liegt morgens zwischen 4 und 9 Uhr. Späteres Pflücken ist nicht sinnvoll, da sich der Ölgehalt der Blüten aufgrund der ansteigenden Temperatur im Laufe des Tages verringert.

Die weitere Verarbeitung der Rosenblüten erfolgt in speziellen Destillationsanlagen, die mehrere Tonnen Blüten aufnehmen können. Die Blüten werden zunächst mit der vierfachen Menge Wasser eingeweicht, anschließend erhitzt und die flüchtigen Komponenten abdestilliert. Die duftenden Bestandteile der Rosenblüten werden zusammen mit dem aufsteigenden Wasserdampf in die Gasphase befördert und schließlich an dem in der Anlage befindlichen Kühler kondensiert. Das Rosenöl scheidet sich hier als spezifisch leichtere Phase auf dem Kondensat (Rosenwasser) ab. Für den Handel wird Rosenwasser üblicherweise mit Parabenen oder Natriumbenzoat konserviert, da es sonst sehr schnell verkeimen würde.

Rosenextrakt (konkretes Rosenöl) wird durch Extraktion aus frisch gepflückten Blüten mit gereinigtem Petrolbenzin gewonnen; nach dem Abdampfen des Lösungsmittels erhält man ein wachsartiges orangegelbes bis olivgrünes Produkt, das einen intensiven süßblumigen Rosengeruch aufweist. Aus dem konkreten Rosenöl wird anschließend durch Extraktion mit verdünntem Äthanol das sogenannte 'absolute Rosenöl' hergestellt. Hierbei gelingt es, die aus den Blüten stammenden Wachse (Stearoptene) weitestgehend abzutrennen.

Stefanie Hahn | idw
Weitere Informationen:
http://www.jki.bund.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics