Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomarker für aggressiven Blasenkrebs entdeckt

19.02.2019

Das aggressive Carcinoma in situ unterscheidet sich mikroskopisch betrachtet kaum von einer starken Blasenentzündung. Ein neuer Biomarker erleichtert die Diagnostik. Mithilfe eines neuen Ansatzes der Label-freien Digital-Pathologie in Kombination mit Proteomik entdeckte ein Bochumer Forscherteam des Protein research Unit Ruhr within Europe, kurz Pure, das Protein AHANAK2 als zuverlässigen Biomarker für das Carcinoma in situ. Das Forscherteam berichtet im American Journal of Pathology vom 12. Februar 2019.

Im Zweifel muss die Blase entfernt werden


Kathrin Witzke und Barbara Sitek (von links) analysierten Tausende Proteine aus Gewebeproben.

© RUB, Marquard


Frederik Großerüschkamp und Klaus Gerwert entwickelten eine auf Infratspektroskopie basierende Untersuchungsmethode, die verschiedene Gewebe unterscheiden hilft.

© RUB, Marquard

Da das Carcinoma in situ äußerst aggressiv ist, muss Patientinnen und Patienten bisher im Zweifel die Blase entfernt werden, auch auf die Gefahr hin, dass sie nur eine Entzündung haben. Um die Diagnostik zu vereinfachen und Patienten unnötige Operationen zu ersparen, suchte das Bochumer Forscherteam nach einem Biomarker. Dazu sammelten Dr. Florian Roghmann und Prof. Dr. Joachim Noldus am Marienhospital Herne Gewebeproben mit hochgradigem Karzinom und Entzündung aus vollständig entfernten Blasen von Blasenkrebs-Patienten.

Automatisierte Label-freie Digital-Pathologie

Diese Gewebeproben wurden mit einem von Prof. Dr. Klaus Gerwert und Dr. Frederik Großerüschkamp am Lehrstuhl für Biophysik der Ruhr-Universität Bochum (RUB) neu entwickelten Verfahren, der Label-freien digitalen Pathologie, klassifiziert.

Dabei wird das Gewebe nicht mit Chemikalien, sondern mithilfe eines Computers eingefärbt, um die morphologischen Veränderungen sichtbar zu machen. Die Färbung basiert auf Infrarotspektren, die wie ein Fingerabdruck den biochemischen Zustand anzeigen.

Mit diesem Verfahren konnten die Biophysiker in unbehandelten Gewebeproben automatisch und Label-frei homogene Regionen jeweils von Tumor und Entzündung eingrenzen. Mit der Lasermikrodissektion konnten die Geweberegionen dann automatisiert ausgeschnitten werden.

„Mit der Label-freien Digital-Pathologie können wir somit ortsaufgelöst sehr homogene Proben für die nachfolgenden molekularauflösenden Methoden gewinnen", erklärt Klaus Gerwert, Sprecher von Pure.

Identifizierung von neuen Biomarkerkandidaten

Das Team des Medizinischen Proteom-Centers der RUB nahm die so selektierten homogenen Gewebeproben genauer unter die Lupe und identifizierte mehr als 2.000 darin enthaltene Proteine. „Bedeutend war vor allem die Frage, welche dieser Proteine in Tumorgewebe im Vergleich zu entzündlichem Gewebe deutlich stärker oder schwächer vertreten waren“, erklärt Dr. Kathrin Witzke. Etwa 80 Proteine unterschieden sich in ihrer Menge signifikant.

Die drei interessantesten dieser Biomarker-Kandidaten wurden dann daraufhin geprüft, ob sie sich für den diagnostischen Einsatz gut anfärben lassen und auch in großen Patientenkohorten verändert sind.

„Schließlich blieb ein aussagekräftiger Biomarker übrig, das Protein AHANAK2“, sagt Prof. Dr. Barbara Sitek, Bereichsleiterin Clinical Proteomics am Medizinischen Proteom-Center, einer Säule von Pure.

„Die Identifizierung neuer Biomarker für die Diagnostik ist ein wichtiger Schritt hin zur personalisierten Medizin. Der gemeinsame Label-freie Ansatz eröffnet hier vollkommen neue Perspektiven“, ergänzt Dr. Hendrik Jütte, Oberarzt im Institut für Pathologie der RUB unter der Leitung von Prof. Dr. Andrea Tannapfel.

Durch die Kombination aus Infrarotspektroskopie und Proteomics haben Pathologinnen und Pathologen somit mit dem neuen Proteinbiomarker eine Entscheidungshilfe zur Hand, um eine verbesserte Diagnose von Blasentumoren stellen zu können.

Umzug in den Forschungsbau

Diese Arbeiten wurden im Rahmen des Pure-Konsortiums durchgeführt, das im Frühjahr 2019 in den neuen Forschungsbau Prodi einziehen wird. „In dieser Arbeit haben wir den in Pure entwickelten Ansatz zum ersten Mal erfolgreich zur Identifizierung neuer Biomarker eingesetzt. Mit dem Einzug in das neue Forschungsgebäude Prodi erhoffen wir weitere Synergien und die Entdeckung neuer wichtiger Biomarker“, erklärt Klaus Gerwert, Gründungsdirektor von Prodi.

Förderung

Die Arbeiten im Verbund Pure wurden gefördert vom Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Klaus Gerwert
Lehrstuhl Biophysik
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24461
E-Mail: gerwert@bph.rub.de
Prof. Dr. Barbara Sitek
Medizinisches Proteom-Center
Medizinische Fakultät
Ruhr-Universität Bochum
Tel:. 0234 32 24362
E-Mail: barbara.sitek@rub.de

Originalpublikation:

Kathrin E. Witzke, Frederik Großerüschkamp, Hendrik Jütte et al.: Integrated fourier transform infrared imaging and proteomics for identification of a candidate histochemical biomarker in bladder cancer, in: American Journal of Pathology, 2019, DOI: 10.1016/j.ajpath.2018.11.018

Weitere Informationen:

Fotos zu dieser Presseinformation finden Sie zum Herunterladen unter: https://news.rub.de/presseinformationen/wissenschaft/2019-02-19-proteinforschung...

Meike Drießen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf
24.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Pflanzenkulturhalle geht auf Reisen – Modell-Container wird ab Ende März in Dresden präsentiert
24.02.2020 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantencomputern das Lernen beibringen

24.02.2020 | Physik Astronomie

Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf

24.02.2020 | Biowissenschaften Chemie

Wie Erdbeben die Schwerkraft verformen

24.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics