Kein Leben ohne Katalyse

„Nie war der Forschungstransfer so konkret und weitreichend wie bei Ihrem Projekt“, hatte Baden-Württembergs Ministerpräsident Günther Oettinger bei der Eröffnung des gemeinsamen Forschungslabors „CaRLa“ der Ruprecht-Karls-Universität Heidelberg und der BASF Aktiengesellschaft betont.

Dabei ist der Technologietransfer zwischen Hochschulen und Industrie durchaus ein Problem für die klassischen Universitäten, wie der Rektor der Ruperto Carola, Professor Peter Hommelhoff, festgestellt hatte. Vielleicht ist es aber gerade die Katalyse, mit der es gelingt, den Technologietransfer voranzubringen, versteckt sich doch hinter dem Begriff Katalyse nichts anderes als die Fähigkeit einer bestimmten Substanz, dafür zu sorgen, dass zwei andere Substanzen miteinander reagieren können. Und das bei einem wesentlich geringeren Energieaufwand als sonst üblich.

Katalytische Prozesse sind aus unserer Welt nicht wegzudenken. „Etwa 80 Prozent aller chemischen Produkte werden mit Hilfe katalytischer Reaktionen hergestellt“, hatte Dr. Stefan Marcinowski, Mitglied des Vorstandes der BASF, erläutert. Wie etwa Ammoniak, das als Grundlage für die Düngemittelherstellung für eine ausreichende Ernährung eines großen Teils der Weltbevölkerung sorgt. Die industrielle Ammoniak-Produktion war übrigens bereits ein frühes Gemeinschaftsprojekt der Heidelberger Universität und BASF, für das Fritz Haber und Carl Bosch 1918 beziehungsweise 1931 den Nobelpreis erhielten.

Dass die Katalyse unser Leben auch im kleinsten Detail beeinflusst, ja sogar ohne Katalyse das Leben nicht möglich wäre, zeigte Professor Karl Anker Jørgensen von der Universität Aarhus, Dänemark, in seinem Vortrag „The mirror image world“ auf. Beispielsweise gibt es so genannte chirale Moleküle, die sich wie Bild- und Spiegelbild verhalten und vergleichbar sind mit der linken und rechten Hand des Menschen oder mit zwei Schrauben mit einem links- und einem rechtsgängigen Gewinde.

Den Unterschied zwischen diesen chemisch identischen, aber sich durch die räumliche Struktur unterscheidenden Moleküle können wir manchmal sogar schmecken oder riechen, etwa bei der Substanz Carvon, die der Duftstoff der Minze ist. In ihrer gespiegelten Form riecht sie allerdings nach Kümmel. Genauso verhält sich es sich bei dem Duftstoff Limonen, der in der einen Form nach Zitrone riecht, in der anderen nach Orangen.

Das unterschiedliche Empfinden der chiralen Substanzen liegt in unserem Sinnessystem begründet, denn dort befinden sich Rezeptoren, an die nur das Molekül mit der richtigen Passform andocken kann, so wie sich zwei Menschen schlecht die Hände schütteln können, wenn der eine die linke Hand reicht und der andere die rechte. Diese Rezeptoren senden dann ein Signal an unser Großhirn und das erkennt schließlich „Zitrone“ oder „Orange“.

Doch das Leben bevorzugt auch oft nur eines der beiden chiralen Moleküle. So fand Louis Pasteur heraus, dass Mikroorganismen sich nur von der natürlichen, durch Fermentation gewonnen Form der Weinsäure ernähren können. Die dazu spiegelbildliche, künstliche Weinsäure verschmähen die Mikroorganismen. Auch im medizinischen Bereich sind chirale Moleküle von Bedeutung, so bei dem Wirkstoff Warfarin, der zur Vorbeugung von Thrombosen oder Embolien zur Blutverdünnung eingesetzt wird, denn auch bei ihm ist nur die eine Form effektiv.

Mehr aus der industriellen Forschung berichtete anschließend Dr. Howard Turner, Vizepräsident von Catalysis Research der Symyx Technologies, Inc., der einen Einblick in die Entwicklung neuer Katalysatoren gab. „Die Entdeckung neuer Katalysatoren ist ein wichtiger, aber seltener Vorgang“, betonte der Wissenschaftler und belegte dies am Beispiel der Entwicklung eines Katalysators für die Herstellung eines Polyolefins. 110 Millionen Tonnen Polyolefine werden jährlich weltweit hergestellt, wobei Polyethylen und Polypropylen die bekanntesten Vertreter dieser Gruppe von Kunststoffen sind. Zur Herstellung von Polyolefinen sind Katalysatoren unabdingbar, und besonders die Temperaturbeständigkeit dieser Substanz spielte eine wesentliche Rolle bei der Entwicklung eines neuen Katalysators für die Produktion eines so genannten isotaktischen Polypropylens.

Nach einer ersten Testphase mussten in der engeren Auswahl immer noch 2000 unterschiedliche Substanzen getestet werden, wobei 144 Experimente für jede Substanz notwendig waren. Der dafür notwendige Zeitaufwand belief sich trotz des Einsatzes von Synthese- und Analyseautomaten und Hochdurchsatzverfahren auf eineinhalb Jahre, und selbstverständlich war damit auch ein großer Personaleinsatz verbunden. So gab denn Howard Turner durchaus auch einen Einblick in die zukünftige Arbeit der zwölf Postdoktoranden in dem gemeinsamen Forschungslabor der Universität Heidelberg und BASF, dessen wissenschaftliche Leitung Dr. Christoph Jäkel von der BASF und Professor Peter Hofmann von der Ruperto Carola übernehmen.

Stefan Zeeh

Rückfragen bitte an:
Professor Dr. Peter Hofmann
Organisch-Chemisches Institut
Ruprecht-Karls Universität Heidelberg
Im Neuenheimer Feld 270
69120 Heidelberg
Tel. 06221 548502
ph@oci.uni-heidelberg.de
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Media Contact

Dr. Michael Schwarz idw

Weitere Informationen:

http://www.uni-heidelberg.de/presse

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer