Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Adulte Stammzellen in der Biotechnologie und für die zukünftige Regenerative Medizin

08.11.2006
Fraunhofer IBMT - komplette Lösungen aus einer Hand

Auf der MEDICA 2006 stellen Forscher des Fraunhofer-Instituts für Biomedizinische Technik IBMT ein integriertes Konzept zur Isolierung von adulten Stammzellen, der In-vitro-Vermehrung und Differenzierung sowie der Charakterisierung mittels Ultraschall und der Konservierung dieser Zellen vor.

Adulte Stammzellen, das erwies sich in den letzten Jahren immer mehr, verfügen neben embryonalen Zellen ebenfalls über das Potenzial, bei entsprechender Stimulierung fast jedweden Zelltypus in vitro zu bilden. Das Fraunhofer IBMT hat das enorme Potenzial dieser Entwicklung für die regenerative Medizin von Anfang an erkannt und eine international beachtete Expertise in der Gewinnung, Charakterisierung und schonenden Handhabung bis zur kontrollierten Kryokonservierung erworben.

Der menschliche Körper besteht aus ca. 220 verschiedenen Zelltypen. Jeder dieser Zelltypen übernimmt bestimmte Auf-gaben im Organismus, deren Erfüllung spezielle biochemische und mechanische Funktionalitäten der Zellen erfordert. Diese Funktionalitäten entstehen durch Differenzierung der Zellen aus Vorläufer- und Stammzellen. Der Prozess der Zelldifferenzierung findet kontinuierlich im Körper statt, um den natürlichen Zellverlust durch Alterung auszugleichen. Überdies kann der Prozess durch Organverletzungen verstärkt werden. Bei Erkrankungen oder stärkeren Verletzungen kann die Regenerationsfähigkeit des Körpers u. U. nicht ausreichend sein.

Hier setzt die Zelltherapie der regenerativen Medizin an. Eine Möglichkeit besteht darin, Vorläuferzellen außerhalb des Körpers zu vervielfältigen und dann in einer Zelltherapie einzusetzen, so dass die Regenerationsfähigkeit des erkrankten Gewebes erhöht wird. Ein anderer Ansatz zielt darauf ab, Stammzellen auch außerhalb des Körpers zu bestimmten Zelltypen zu differenzieren, um mit den - de novo - generierten Zellen das erkrankte Gewebe zu ersetzen.

Voraussetzung dafür sind standardisierte Prozesse, zur Isolierung, Kultivierung, Charakterisierung und Konservierung dieser Zellen.

Hierzu wurden am Fraunhofer IBMT Protokolle ausgearbeitet, die eine definierte Gewinnung von adulten Stammzellen aus exokrinem Drüsengewebe (Speicheldrüse, Pankreas, Schweißdrüse) ermöglichen. Über verschiedene Stufen der chemischen und mechanischen Zellvereinzelung können die Stammzellen selektiv in Kultur genommen und in vitro vermehrt werden. Die gewonnenen Stammzellen lassen sich durch zellspezifische Marker identifizieren und, falls erwünscht, kloniert oder nach Subpopulationen auftrennen.

Adulte Stammzellen haben die Eigenschaft, in vitro fortwährend spontan zu differenzieren. Um diesen Prozess verfolgen zu können, benötigt man eine Methode, mit der es möglich ist, verschiedene Zelltypen voneinander zu unterscheiden, ohne die Vitalität der Zellen zu beeinträchtigen. Ein Zugang zu dieser anspruchsvollen Aufgabe bietet die Charakterisierung des Zytoskeletts. Wichtige Eigenschaften von Zellen werden durch den Aufbau des Zytoskeletts bestimmt. Die Untersuchung der Funktionalisierung des Zytoskeletts einer Zelle erfordert die Charakterisierung ihrer mechanischen Eigenschaften am lebenden Objekt über Zeiträume von mehreren Tagen.

Hierzu bietet die akustische Mikroskopie ein hohes Potenzial.

Akustische Mikroskopie benutzt fokussierte höchstfrequente Schallwellen im GHz-Bereich zur Abbildung von Zellen und bildet somit die lokalen mechanischen Eigenschaften der Zelle ab. Der eingesetzte Schall hat im Vergleich zu sichtbarem Licht und UV eine sehr niedrige Energie, so dass das Verfahren nicht-invasiv ist und damit die Untersuchung einzelner Zellen über größere Zeiträume hinweg erlaubt. Der Kontrast beruht auf lokalen Variationen der Druck- und Zugfestigkeiten in der Zelle. Deshalb werden weder Färbungen benötigt, die die Vitalität der Zellen oder die Funktionalität von Rezeptoren beeinflussen können, noch werden lichtsensible Zellprozesse manipuliert, da die Messungen in völliger Dunkelheit erfolgen können.

Eine optimale Nutzung von Zelltechnologien in der regenerativen Medizin ist ohne eine robuste, effiziente und hochsichere Konservierung nicht möglich. Das Fraunhofer IBMT hat mit seinem kompletten Kryotechnologieportfolio alle notwendigen Komponenten, um diesen Anforderungen gerecht zu werden.

Bestandteile dieser Technologie sind miniaturisierte Zellcontainer, die bei -150 °C die Teilentnahme von Probenmaterial ohne Auftauen der Restprobe erlauben und gekühlt auch in Teilen weltweit verschickt werden können. Hinzu kommen definierte Einfrier- und Auftauapparate (wie der auf der MEDICA ausgestellte "High Throughput Freezer") sowie Kryobank-Konzeptionen vom Labormaßstab bis zu großindustrieller Skalierung.

Die verschlüsselte doppelte Datenablage, die sowohl in einer zentralen Datenbank als auch fest gekoppelt an die tiefgefrorenen Lebendproben erfolgt, bildet ein weiteres Element der IBMT-Kryobanktechnologie.

Dieses Prinzip und seine technologische Lösung (zu sehen am MEDICA-Exponat "Tieftemperaturelektronik") liefern nahezu vollständige Verwechslungssicherheit, wie sie für eine therapeutische Nutzung der Zellablage unabdingbar ist.

Vervollständigt wird die Tieftemperaturtechnologie durch evolutive und adaptive Datenbank- und Kryobanksteuerarchitekturen, die optimale logistische Abläufe sicherstellen.

Derart übergreifende Komplettlösungen, wie sie am Fraunhofer IBMT entwickelt werden, sind essentielle technologische und technische Voraussetzungen für eine kontrollierte Kryokonservierung und den sicheren Betrieb von industriellen Kryobanken.

Auf der MEDICA 2006 stellen Forscher des Fraunhofer-Instituts für Biomedizinische Technik IBMT ein integriertes Konzept zur Isolierung von adulten Stammzellen, der In-vitro-Vermehrung und Differenzierung sowie der Charakterisierung mittels Ultraschall und der Konservierung dieser Zellen vor.

Besuchen Sie uns auf der MEDICA 2006 in Halle 10 Stand F 05.

Ihre Ansprechpartner:

Allgemein:
Dipl.-Betrw. Markus Michel
Telefon: 06897 / 9071 - 11
Fax: 06897 / 9071 - 49
Email: markus.michel@ibmt.fraunhofer.de
Adulte Stammzellen:
Priv.-Doz. Dr. Charli Kruse
Telefon: 0451 / 2903 - 210
Fax: 0451 / 2901 - 213
Email: charli.kruse@ibmt.fraunhofer.de
Ultraschall-Mikroskopie:
Dipl.-Phys. Eike Weiß
Telefon: 06894 / 980 - 303
Fax: 06894 / 980 - 400
Email: eike.weiss@ibmt.fraunhofer.de
Ultraschall:
Dr. Robert Lemor
Telefon: 06894 / 980 - 225
Fax: 06894 / 980 - 400
Email: robert.lemor@ibmt.fraunhofer.de
Kryotechnologie:
Dipl.-Ing. Frank Ihmig
Telefon: 06894 / 980 - 258
Fax: 06894 / 980 - 400
Email: frank.ihmig@ibmt.fraunhofer.de
Dipl.-Phys. Uwe Schön
Telefon: 06897 / 9071 - 30
Fax: 06897 / 9071 - 99
Email: uwe.schoen@ibmt.fraunhofer.de

Annette Maurer | idw
Weitere Informationen:
http://www.ibmt.fraunhofer.de

Weitere Berichte zu: Charakterisierung Konservierung MEDICA Prozess Stammzelle Zelltyp

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics