Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen Lichtenergie umwandeln: Anders als gedacht

03.07.2006
Lehrbuchmeinung muss korrigiert werden
PNAS berichtet: Photosynthese im Detail erforscht

Die ersten Schritte des Prozesses der Photosynthese laufen anders ab als bisher angenommen. Das haben Biologen der RUB-Arbeitsgruppe von Prof. Dr. Matthias Rögner in Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Bioorganische Chemie (AG Prof. Dr. Alfred Holzwarth) herausgefunden. Im Detail geht es um die Frage, in welcher Reihenfolge sich die ersten Prozesse der Photosynthese abspielen, die in Zeitbereichen von wenigen Picosekunden ablaufen (1 ps = 10-12 Sekunden). Über ihre Ergebnisse berichten die Forscher im renommierten US-Journal "Proceedings of the National Academy of Sciences" (PNAS 103 (2006) 6895-6900).


Der Prozess der Photosynthese findet in den inneren Membranen eines Cyanobakteriums (l. oben) analog zum Prozess in allen grünen Pflanzen statt. Aus diesen Membranen (Mitte) wird das Photosystem 2, welches im Licht Wasser spalten kann, isoliert und charakterisiert (r. unten: 3-D-Struktur des Proteins).


Im Inneren von Photosystem 2: Nach Auftreffen eines Lichtquants konnten drei Elektronentransferschritte im unteren Picosekundenbereich unterschieden werden. Noch schneller vollzieht sich die Übertragung der Anregungsenergie von den Chlorophyllantennen im peripheren Bereich (CP43 und CP47) zum Reaktionszentrum ("Trap").

Nanomaschine spaltet Wasser

Was passiert eigentlich, wenn Sonnenlicht auf eine Pflanze trifft? Wie laufen die Vorgänge der Umwandlung der Lichtenergie auf molekularer Ebene ab und was können wir daraus lernen, um die hohe Effizienz dieser natürlichen Vorgänge gewinnbringend zu kopieren? Dieser Frage widmen sich die Forscher um Prof. Rögner in enger Kooperation mit Prof. Holzwarth, dessen Arbeitsgruppe eine von sehr wenigen ist, die solche Prozesse zeitlich auflösen kann. Die Messungen erfordern neben hochsensitiven Apparaturen große Mengen extrem reinen Proteins, in diesem Fall des Photosystems 2 (PS2). PS2 führt den zentralen Prozess der Photosynthese durch, die lichtinduzierte Wasserspaltung. Die Bochumer Forscher isolierten das Protein aus Cyanobakterien, den einfachsten "Modellpflanzen" (s. Abb. 1). "Obwohl die dreidimensionale Struktur von PS2, gewissermaßen sein 'Bauplan', seit Jahren bekannt ist, blieb die Funktion dieser 'Nanomaschine' im molekularen Bereich, die hauptsächlich über spektroskopische Untersuchungen aufgelöst werden kann, umstritten", erklärt Prof. Rögner. Die jetzt erschienene Publikation des Bochumer und Mülheimer Forscherverbundes könnte einen wesentlichen Beitrag zum Verständnis dieser Prozesse liefern und sie im wahrsten Sinne des Wortes in einem neuen Licht erscheinen lassen.

Ein Chlorophyll, das niemand auf der Rechnung hatte

Im Wesentlichen haben die Forscher zwei zentrale Erkenntnisse gewonnen, die den bisherigen Wissensstand fundamental korrigieren: Der erste Reaktionsschritt im Zentrum von PS2 wird von einem einzelnen Chlorophyll (ChlD1 in Abb. 2) durchgeführt, welches nach bisheriger Überzeugung nicht dafür eingeplant war. "Obwohl es sehr nahe am bisher für das eigentliche Reaktionszentrum gehaltenen Chlorophyll-Paar - das analoge Pigmentpaar in den Reaktionszentren von photosynthetischen Bakterien wird als "spezielles Paar" bezeichnet - liegt, hatte es niemand 'auf seiner Rechnung'", blickt Rögner zurück. Mit der aktuellen Arbeit konnten die Forscher erstmals den experimentellen Beweis dafür unter physiologischen Raumtemperaturbedingungen erbringen (s. Abb. 2). "Folglich muss das Lehrbuchwissen der Photosynthese in dieser Hinsicht korrigiert werden, zumal es sich um ein Prinzip zu handeln scheint, welches die Natur offensichtlich auch im anderen Photosystem, dem Photosystem 1, und darüber hinaus auch bei allen höheren Pflanzen angewandt hat", erklärt der Biologe.

Hohe Oxidationskraft verstehen

Die Spaltung von Wasser in Sauerstoff und Protonen - d.h. die zentrale Funktion für die Speicherung von Solarenergie in der Photosynthese - erfordert die höchste Oxidationskraft, die biologischen Systemen bekannt ist. Die neuen Erkenntnisse der Mülheimer und Bochumer Forscher liefern nun die molekulare Erklärung für die bisher nicht gut verstandene extrem hohe Oxidationskraft von Photosystem 2. Ein monomeres Chlorophyll kann prinzipiell eine wesentlich höhere Oxidationskraft entwickeln als das bisher angenommene "Spezialpaar Chlorophyll".

Weiterleitung ist schneller als Gradientenaufbau

Die zweite zentrale Erkenntnis betrifft den Prozess der Weiterleitung der Lichtanregung: Sie verläuft wesentlich rascher als der Prozess der ersten "chemischen" Reaktion, d.h. der Aufbau eines elektrischen Gradienten über der Membran. Jedes PS2 besitzt eine große Antenne aus vielen Chlorophyllen, welche die Lichtenergie sehr effektiv einfangen und praktisch verlustfrei zu den relativ wenigen Reaktionszentrenchlorophyllen ("Trap") weiterleiten. Für die effektive Ausnutzung der Lichtenergie ist die Beantwortung der Frage wichtig, welcher der beiden Prozesse - Weiterleitung der Lichtanregung oder Aufbau des elektrischen Gradienten - der limitierende ist. Die durchgeführten Untersuchungen zeigen eindeutig, dass die Energieübertragung von den Antennen zum Zentrum der schnellere und damit nicht der limitierende Schritt ist.

Neues Bild der Photosynthese

Zusammengenommen ergibt sich durch diese Erkenntnisse ein neues Bild der primären Vorgänge der Photosynthese. Es wird sicher auch Auswirkungen auf sog. biomimetische Verfahren haben, mit welchen die natürlichen Prozesse künstlich "nachgebaut" werden sollen, um die Solarenergie als unerschöpfliche Energiequelle durch Nachahmung der Natur wesentlich effektiver nutzen zu können als es heute mit Sonnenkollektoren möglich ist.

Titelaufnahme

A. R. Holzwarth, M. G. Müller, M. Reus, M. Nowaczyk, J. Sander, and M. Rögner: Kinetics and mechanism of electron transfer in intact Photosystem 2 and in the isolated reaction center: Pheophytin is the primary electron acceptor. In: PNAS Vol. 103 (2006) S. 6895-6900

Weitere Informationen

Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23634, Fax: 0234/32-14322, E-Mail: matthias.roegner@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.bpf.ruhr-uni-bochum.de

Weitere Berichte zu: Chlorophyll Lichtenergie Oxidationskraft PS2 Photosynthese Photosystem Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen
17.08.2018 | Leibniz Universität Hannover

nachricht Forschende entschlüsseln das Alter feiner Baumwurzeln
17.08.2018 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics