Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Möglichen Gefahren der Nanopartikel auf der Spur - Empa-ForscherInnen entwickeln Zellkultur-Testverfahren

09.05.2006
Die Welt wird besser dank Nanotechnologie. Das verspricht zumindest das Marketing der Nanotechbranche. Hingegen sind mögliche Risiken der winzigen Teilchen für Mensch und Umwelt erst wenig erforscht. Dem wollen Empa-ForscherInnen abhelfen; innerhalb des Projekts "NanoRisk" hat ein Empa-Team Zelltests entwickelt, welche die Toxizität - die "Giftigkeit" - schnell und einfach abschätzen sollen. Erste Ergebnisse zeigen: Nanopartikel ist nicht gleich Nanopartikel.

MaterialwissenschaftlerInnen bieten sich seit dem Anbruch des "Nano-Zeitalters" ungeahnte Möglichkeiten. Denn Nanopartikel - also Teilchen mit einem Durchmesser von einigen Nanometern, oft nur wenige Moleküle gross - weisen andere physikalisch-chemischen Eigenschaften auf als grössere Partikel des gleichen Materials. Damit lassen sich erstmals neuartige Werkstoffe mit massgeschneiderten Eigenschaften herstellen. Schmutz abweisende Hemden, Pfannen, die nichts mehr anbrennen lassen, kratzfeste Beschichtungen, bessere Computer-Harddisks oder effektiverer Sonnenschutz - die Nano-Produktepalette ist in der Tat beeindruckend. Doch wie reagiert der menschliche Organismus auf die winzigen Teilchen? Welche Auswirkungen haben Nanopartikel etwa auf Zellen und Gewebe? Da die Nanoteilchen ungefähr die gleiche Grösse haben wie die Eiweissmoleküle einer Zelle, sollten sie von dieser leicht aufgenommen werden können. Doch was geschieht dann mit der Zelle? Viele Fragen, wenige Antworten.


Menschliche Lungenzellen, die drei Tage lang Eisenoxid-Nanopartikeln (Fe2O3) ausgesetzt waren. Die Zellen fangen bereits an sich abzurunden und von der Unterlage zu lösen. Ein erstes Anzeichen dafür, dass Eisenoxidpartikel zytotoxisch sind. Foto: Peter Wick, Empa.

Höchste Zeit also, sich der "Nanotoxikologie" zu widmen, dachten sich Peter Wick, Arie Bruinink und ihre KollegInnen an der Empa. "Wenn man diese neuartigen Materialien schon in grossem Massstab einsetzen will, ist es notwendig abzuklären, ob die neuen physikalisch-chemischen Eigenschaften nicht unerwartete Auswirkungen auf den menschlichen Organismus mit sich bringen", sagt der Zellbiologe Wick.

Zellkulturen als Versuchskaninchen für Toxizitätstests

Ziel der Empa-ForscherInnen war es, ein schnelles und einfaches Testsystem zu entwickeln, um eine erste Abschätzung der Toxizität von Nanopartikeln zu erhalten ohne auf Tierversuche zurückzugreifen. Ein idealer Kandidat hierfür sind Zellkulturen, wie sie auch bei Toxizitätstests von Chemikalien zum Einsatz kommen. "Wir mussten allerdings schnell feststellen, dass dies bei Nanopartikeln nicht so einfach ist", so Wick. Das Problem: Die kleinen Teilchen verkleben sehr schnell. "Als wir die Nanopartikel in die Nährlösung zu den Zellen gaben, erhielten wir anfangs nur Klumpen, die etwa so gross waren wie eine ganze Zelle", erinnert sich Wick. "Gott sei Dank haben wir gute Materialwissenschaftler an der Empa." Die halfen den Biologen mit einigen Tricks, das Nanopulver in der Zellnährlösung zu suspendieren und anschliessend zu untersuchen, etwa unter dem Elektronenmikroskop. So wissen die Empa-ForscherInnen stets genau, in welcher Form und in welcher Grösse die Nanopartikel vorliegen. Inzwischen ist es ihnen auch gelungen, die Nanoteilchen nach Grösse und Form voneinander zu trennen. "Viele der bisherigen Studien, die sich mit der Toxizität von Nanopartikeln befassen, wurden von Biologen durchgeführt, die sich nicht darüber im Klaren sind - wie wir anfangs eben auch -, in welcher Form die Teilchen schlussendlich mit den Zellen interagieren. Das ist dann gute Biologie, aber lausige Materialwissenschaft", sagt Wick. Gebe man einfach Nano-Rohmaterial auf die Zellen, könne man nie sicher sein, welche Art von Teilchen für den beobachteten Effekt verantwortlich waren.

Nicht alle Nanopartikel sind gleich schädlich für die Zellen

Nach ihren materialwissenschaftlichen "Hausaufgaben" haben Wick und seine KollegInnen nun sieben industriell wichtige Nanopartikel auf ihre zelltoxische Wirkung untersucht - von dem als harmlos geltenden Siliziumoxid, das schon seit langem als Nahrungsmittelzusatz verwendet wird, etwa in Ketchup, über Titan- und Zinkoxid, das in Kosmetika zum Einsatz kommt, bis hin zu Cer- und Zirkonoxid aus der Elektronikindustrie. Zum Vergleich testeten die Empa-ForscherInnen Asbestfasern, deren toxische Wirkung auf Zellen bestens bekannt und untersucht ist. (Asbestfasern, die eine durchschnittliche Länge von rund zehn Mikrometern und einen Durchmesser von etwa einem Mikrometer aufweisen, zählen allerdings nicht zu den Nanopartikeln.) Als Versuchskaninchen benutzten die ForscherInnen Zellinien zweier Zelltypen: menschliche Lungenzellen und Mausfibroblasten, welche häufig bei Toxizitätstest verwendet werden. Der Stoffwechsel der Zellen, deren Teilungsrate sowie ihr Erscheinungsbild unter dem Mikroskop diente den ForscherInnen als Gradmesser für den Gesundheitszustand der Zellen. Fazit der Studie, die demnächst im Fachblatt "Environmental Science & Technology" erscheint: "Nicht alle Nanopartikel sind gleich toxisch".

Zwischen Asbest und Siliziumoxid konnte das Empa-Team eine Art "Toxizitätsrangliste" aufstellen: Während Eisen- und Zinkoxidpartikel den menschlichen Lungenzellen erheblich zusetzen, erwies sich Trikalziumphosphat (das bei medizinischen Implantaten zum Einsatz kommt) als ähnlich verträglich wie Siliziumoxid. Titanoxid, Ceroxid und Zirkonoxid haben den Zellstoffwechsel zwar kurzfristig beeinträchtigt, waren aber deutlich weniger toxisch als Asbest. Insgesamt reagierten die menschlichen Lungenzellen deutlich empfindlicher auf die Nanopartikel als Mausfibroblasten. "Die Lungenzellen eignen sich daher sehr gut für derartige Toxizitätsuntersuchungen", sagt Wick. "Unser Ziel ist es, ein Zellsystem zu entwickeln, das den Tierversuchen möglichst nahe kommt." Daher untersuchen die Empa-ForscherInnen derzeit eine ganze Reihe unterschiedlicher Zelllinien, unter anderem drei unterschiedliche Lungenzelltypen sowie frisch isolierten Hühnerembryo-Nervenzellen.

Für Kohlenstoffnanoröhrchen gilt: Je mehr sie miteinander verkleben, desto toxischer

In einer noch unveröffentlichten Studie haben Wick und seine KollegInnen Kohlenstoffnanoröhrchen - im wahrsten Sinn - unter die Lupe genommen. Im Gegensatz zu Nanopartikeln waren die Nanoröhrchen gerade dann besonders schädlich für die Zellen, wenn sie zu grösseren Nadeln zusammengeklebt waren. "Diese Agglomerate gleichen Asbestfasern - sowohl im Aussehen wie auch in ihrer Toxizität", sagt Wick. "Die scheinen also nicht ganz unbedenklich zu sein."

Als nächstes will der Biologe verstehen, was genau in einer Zelle abläuft, wenn sie Nanopartikeln ausgesetzt ist. Dazu analysiert er die Aktivität von Tausenden von Genen mit Hilfe so genannter DNA-Chips. "So können wir sehen, was die Partikel in der Zelle auslösen, welche genetischen Programme an- oder abgeschaltet werde", so Wick.

"NanoRisk" untersucht auch die Auswirkungen der Nanotechnologie auf die Gesellschaft

Die Ergebnisse aus Wicks Studien werden - zusammen mit anderen Daten etwa aus Tierversuchen oder Untersuchungen über die Verteilung der Nanopartikel in der Umwelt - von ForscherInnen um Lorenz Hilty dazu benutzt, eine Risikoabschätzung für Nanopartikel und -röhrchen vorzunehmen. Dazu analysieren sie sämtliche Studien zum Thema Nanotoxikologie und befragen ExpertInnen, um die Stärken und Schwächen der Studien zu evaluieren. Vorläufiges Zwischenresultat: Es gibt erst wenige aussagekräftige Studien auf diesem Gebiet, die sich zum Teil erst noch widersprechen. Das könnte unter anderem daran liegen, dass die verwendeten Nanopartikel oft nicht genau analysiert werden; die ForscherInnen wissen also oft nicht, in welcher Form bzw. Grösse die Teilchen vorliegen.

In einer zweiten Phase werden die Empa-ForscherInnen dann konkrete Anwendungsbeispiele von Kohlenstoffnanoröhrchen genauer untersuchen, und zwar von deren Herstellung über die Fertigung der Nanopartikel enthaltenden Produkte bis zu deren Entsorgung. Ziel dieser Lebenszyklusanalyse ist es, genaue Angaben darüber zu erhalten, wann Nanopartikel in welchen Mengen freigesetzt werden, um daraus mögliche Vorsorgestrategien ableiten zu können.

Weitere Informationen
Dr. Peter Wick, Abt. Materials Biology Interactions, peter.wick@empa.ch, Tel. +41 71 274 76 84
Prof. Dr. Lorenz Hilty, Abt. Technologie und Gesellschaft, lorenz.hilty@empa.ch, Tel. +41 71 274 73 45

Dr. Michael Hagmann, Abt. Kommunikation, michael.hagmann@empa.ch, Tel. +41 44 823 45 92

Martina Peter | idw
Weitere Informationen:
http://www.empa.ch/
http://www.empa.ch/plugin/template/empa/*/32939/---/l=2

Weitere Berichte zu: Empa-ForscherInnen Lungenzellen Nanopartikel Teilchen Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hepatitis C-Viren erfolgreich ausschalten
25.03.2019 | Helmholtz-Zentrum für Infektionsforschung

nachricht Molekulares Doping
25.03.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochdruckwasserstrahlen zum flächigen Materialabtrag von hochfesten Werkstoffen erprobt

Beim Fräsen hochfester Werkstoffe wie Oxidkeramik oder Sondermetalle – und besonders bei der Schruppbearbeitung – verschleißen Werkzeuge schnell. Für Unternehmen ist die Bearbeitung dieser Werkstoffe deshalb mit hohen Kosten verbunden. Im Projekt »HydroMill« hat das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen mit seinen Projektpartnern nun gezeigt, dass sich der Hochdruckwasserstrahl zum flächigen Materialabtrag von hochfesten Werkstoffen eignet. War der Einsatz von Wasserstrahlen bislang auf die Schneidbearbeitung beschränkt, zeigen die Projektergebnisse, wie sich hochfeste Werkstoffe kosten- und ressourcenschonender als bisher flächig abtragen lassen.

Diese neue und zur konventionellen Schruppbearbeitung alternative Anwendung der Wasserstrahlbearbeitung untersuchten die Aachener Ingenieure gemeinsam mit...

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nieten, schrauben, kleben im Flugzeugbau: Smarte Mensch-Roboter-Teams meistern agile Produktion

25.03.2019 | HANNOVER MESSE

Auf der Suche nach der verschwundenen Antimaterie: Messungen mit Belle II erfolgreich gestartet

25.03.2019 | Physik Astronomie

HEIDENHAIN auf der CONTROL 2019: Belastbare Systeme für mehr Genauigkeit und Zuverlässigkeit

25.03.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics