Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die vergessene Methan-Quelle

12.01.2006


Pflanzenkammer zur Untersuchung der Methanbildung an Pflanzen, hier am Beispiel von Weidelgras (Lolium perenne). Bild: Max-Planck-Institut für Kernphysik


Tropischer Regenwald in Surinam; tropische Gebiete tragen nach den neuen Forschungsergebnissen des Max-Planck-Instituts für Kernphysik besonders stark zum Methanbudget in der Atmosphäre bei, da dort die größte Menge an Biomasse gebildet wird. Bild: Max-Planck-Institut für Kernphysik/B. Scheeren


In den letzten Jahren ist die Biosphäre immer mehr in den Blickpunkt der Forschung geraten, gerade was den Austausch klimarelevanter Gase zwischen Biosphäre und Atmosphäre betrifft. Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg haben jetzt genauestens analysiert, welche organischen Gase von Pflanzen abgegeben werden. Dabei machten sie die überraschende Entdeckung, dass Pflanzen - entgegen allen bisherigen Annahmen - das Treibhausgas Methan selbst freisetzen. Ebenso überraschend war, dass die Bildung von Methan durch die Anwesenheit von Luftsauerstoff nicht verhindert wird. Diese Entdeckung ist nicht nur für Pflanzenforscher, sondern gerade auch für das Verständnis der Wechselwirkungen wichtig, die zwischen der globalen Erwärmung und der erhöhten Produktion von Treibhausgasen bestehen (Nature, 12. Januar 2006).


Methan ist nach Kohlendioxid das zweitwichtigste Treibhausgas, das zur Klimaveränderung beiträgt. Die Konzentration von Methan in der Atmosphäre hat sich in den vergangenen 150 Jahren nahezu verdreifacht. Am bekanntesten ist Methan als Erdgas, das heute eine wichtige Rolle in der Energieversorgung spielt. Trotzdem geht nur ein Teil der Zunahme in der Atmosphäre auf das Konto von industriellen Aktivitäten, die direkt mit der Energieerzeugung und -verbrennung verbundenen sind. Weit stärker hat die Nahrungsmittelversorgung der rasch zunehmenden Weltbevölkerung die Methankonzentration beeinflusst - durch Emissionen von Methan aus so genannten "biogenen" Quellen, z.B. Reisanbau oder Rinderhaltung. In der Tat ist das atmosphärische Methan heute überwiegend biogenen Ursprungs.

Bisher nahm man an, dass biogenes Methan grundsätzlich durch Mikroorganismen und unter Ausschluss von Sauerstoff, also anaerob gebildet wird. Dabei werden Acetat oder Wasserstoff und Kohlendioxid zu Methan umgewandelt, die ihrerseits beim anaeroben Abbau von organischem Material entstehen. Die mengenmäßig wichtigsten anoxischen Standorte und Quellen von Methan sind natürliche Feuchtgebiete und Reisfelder, außerdem die Verdauung bei Wiederkäuern und Termiten, Mülldeponien sowie das Faulgas aus Klärwerken. Nach bisherigen Schätzungen machen diese Quellen nahezu zwei Drittel der weltweiten Methan-Jahresproduktion von etwa 600 Millionen Tonnen aus.


Die Wissenschaftler des Max-Planck-Instituts für Kernphysik haben nun herausgefunden, dass Pflanzen selbst Methan produzieren und in die Atmosphäre abgeben, und zwar in ganz normaler sauerstoffreicher Umgebung. Sie machten diesen überraschenden Befund, als sie untersuchten, welche Gase von abgestorbenen und frischen Laubblättern emittiert werden. In einem weiteren Schritt untersuchten die Wissenschaftler im Labor und im Freien auch die Freisetzung von Gasen an lebenden Pflanzen, wie Mais und Weidelgras (s. Abb. 1). Hierbei zeigte sich, dass die lebenden Pflanzen sogar 10 bis 100-fach mehr Methan freisetzten als abgestorbenes Pflanzenmaterial. Zudem stellten die Forscher fest, dass sich die Methan-Bildungsrate noch drastisch erhöhte, wenn die Pflanzen der Sonne ausgesetzt waren.

Obwohl es bereits erste Hinweise gibt, ist noch ungeklärt, welcher Prozess der Bildung von Methan in Pflanzen eigentlich zugrunde liegt. Die Heidelberger Wissenschaftler nehmen an, dass sich dahinter ein bisher unbekannter Reaktionsmechanismus verbirgt, der mit dem herkömmlichen Wissen über Pflanzen nicht zu erklären ist - also ein neues Forschungsgebiet für Biochemiker und Pflanzenphysiologen.

Den ersten Schätzungen zufolge produzieren terrestrische Pflanzen auf der Erde zwischen 60 und 240 Millionen Tonnen Methan pro Jahr. Dies bedeutet, dass heutzutage etwa 10 bis 30 Prozent der Methanproduktion eines Jahres von Pflanzen stammt. Der Großteil, also etwa zwei Drittel, kommt aus tropischen Gebieten, da dort am meisten Biomasse gebildet wird. Der Nachweis der direkten Methanemission bei Pflanzen erklärt auch die unerwartet hohen Methankonzentrationen über tropischen Wäldern, die erst vor kurzem von einer Forschungsgruppe der Universität Heidelberg bei Satellitenbeobachtungen gemessen wurden.

Doch warum kommt eine scheinbar so triviale Entdeckung erst jetzt, 20 Jahre nachdem Hunderte von Wissenschaftlern weltweit den globalen Kreislauf von Methan untersucht haben? "Methan darf eigentlich so nicht entstehen" sagt Dr. Frank Keppler. "Es ist eine (bisher) anerkannte Lehrbuchweisheit, dass biogenes Methan nur unter Ausschluss von Sauerstoff gebildet werden kann. Darum hat bisher einfach niemand genau hingesehen."

In der Tat muss man schon sehr genau messen, um die Emissionen zu quantifizieren. Die Heidelberger Forscher haben die meisten ihrer Experimente in methanfreier Luft gemacht, um den hohen natürlichen Hintergrund an Methan auszuschalten. Außerdem benutzten sie Isotopenanalysen, um zweifelsfrei nachzuweisen, dass es sich hierbei um einen neuartigen Produktionsprozess von Methan handelt. Durch dieses "genaue Hinschauen", entgegen der althergebrachten Lehrmeinung, machten sie eine Entdeckung, die wohl dazu führen wird, dass die Passagen zur Methanbildung in den einschlägigen Lehrbüchern neu geschrieben werden müssen.

Aufbauend auf dieser Entdeckung wollen die Wissenschaftler nun neben Laborversuchen auch umfangreiche Feldstudien und Fernerkundungsmethoden einsetzten, um die Stärke dieser Methanquellen besser abschätzen zu können. Darüber hinaus stellt sich die spannende Frage, welche Rolle die Biosphäre bei der Methanbildung in der Erdgeschichte gespielt hat und welchen Einfluss steigende globale Temperaturen und immer höhere Kohlendioxidkonzentrationen in der Atmosphäre auf die Produktion von Methan aus Pflanzen haben werden. Antworten auf diese Fragen darauf sind wichtig, um Rückkopplungsprozesse zwischen der Klimaentwicklung und der Produktion von Treibhausgasen abschätzen zu können.

Originalveröffentlichung:

Frank Keppler, John T. G. Hamilton, Marc Braß und Thomas Röckmann
Methane emissions from terrestrial plants under aerobic conditions
Nature, 12 January 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Biosphäre Kernphysik Methan Methanbildung Treibhausgas

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

nachricht Kleber für gebrochene Herzen
18.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics