Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schillernde Farben, die sich mit der Temperatur verändern

02.12.2005



Schema der Herstellung von gezielt beschichteten Mikropartikeln. Links: Seitenansicht eines Kolloid-Kristalls bei Beschuss mit reaktiven Ionen. Mitte: Seitenansicht eines Kolloid-Kristalls, bei dem durch Ionen-Beschuss die Größe der oberen Kolloid-Lagen reduziert wurde; der Kristall wird mit Gold bedampft. Rechts: Aufsicht eines Kolloid-Kristalls mit kleineren Kolloiden (rosa) als oberster Schicht, einer mittleren Schicht (blau) und einer dritten Schicht (schwarz), die die Goldablagerungen (orange) als dreieckförmige Flächen enthält. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Gezielt beschichtete Mikropartikel: Elektronenmikroskopieaufnahme der zweiten Lage eines Kolloid-Kristalls ohne Ionenätzung (links). Die mit Gold bedampften Flächen sind hell. Mitte: Aufsicht auf die dritte Lage eines Kolloid-Kristalls nach Ätzung und Goldbeschichtung. Rechts: Abbildung der Rückseite der dritten Lage des Kolloid-Kristalls. Sie enthält Goldpunkte (hell) mit einstellbarer Größe zwischen 20 und 80 Nanometer im Kernschatten der Bedampfung. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Potsdamer Max-Planck-Forscher erweitern den Baukasten an Kolloid-Partikeln und ermöglichen neue Farbstoffe

... mehr zu:
»Atom »Molekül »Partikel »Schicht

Wissenschaftlern am Max-Planck-Institut für Kolloid- und Grenzflächenforschung ist es mit Ionenbeschuss und Goldbedampfen gelungen, eine neue Familie von Partikeln herzustellen, deren Bindungsverhalten sich chemisch maßschneidern lässt. Mit diesen Partikeln hofft man nicht nur, die Dynamik von Festkörpern und Molekülen besser erforschen zu können - die Entdeckung könnte auch zum Beispiel neue Lacke hervorbringen, die ihre Farbe mit der Temperatur verändern (Angewandte Chemie, 2. Dezember 2005.

Dass die Fingernägel von Frauen oder teure Autos heute wie Opale in vielen Farben schillern können, liegt an den Fortschritten der "Kolloidchemie", der Chemie kleiner Partikel: Die bunten Farben in modernen Lacken werden dadurch hervorgerufen, dass das Licht an Schichten aus regelmäßig angeordneten kolloidalen Teilchen reflektiert wird. Dabei werden einzelne Farben ausgelöscht oder verstärkt; die Dicke der Schichten - die so genannte "Gitterkonstante" - ist entscheidend für die Farbe. Weil sich Kugelform und Oberfläche der Teilchen heute maßschneidern lassen, kann man optimierte Kristalle mit den gewünschten Gitterkonstanten im Bereich des sichtbaren Lichtes herstellen.


Doch Kolloide können noch viel mehr: Sie sind auch interessante Modellsysteme für die Festkörperphysik, denn das Bindungsverhalten der relativ großen Partikel lässt sich mit dem der viel kleineren Atome vergleichen. Weil sie langsamer reagieren als Atome, kann man an ihnen Prozesse aus der Festkörperphysik beobachten und durchspielen. Problem: Atome sind - anders als die meisten Partikel - in der Regel nicht kugelsymmetrisch, sondern besitzen verformte "Orbitale", die wie Hanteln oder Ovale in den Raum ragen.

Das Forscherteam am Max-Planck-Institut für Kolloid- und Grenzflächenforschung um Dr. Wang bemüht sich daher, Partikel herzustellen, die nicht kugelsymmetrisch mit ihren Nachbarn wechselwirken. Dazu platzierten sie einen Kolloid-Kristall auf einer ebenen Oberfläche (Abb. 2). Durch Beschuss mit reaktiven Ionen reduzierten sie die Größe der Partikel der oberen Lagen gezielt und erweiterten die freien Flächen zwischen den Kolloiden.

Anschließend bedampften sie den Kristall mit Gold. Dabei gelangte ein kleiner Teil des Goldes durch die Lücken der oberen Schichten wie durch eine Maske bis auf die unteren Schichten. So ließen sich Beschichtungsmuster verschiedener Symmetrie und Größe im Nanometerbereich herstellen (s. Abb. 1). Zur Überraschung der Wissenschaftler lagerte sich aber auch in den tieferen Schichten auf der Unterseite der Partikel Gold an (Abb. 1 rechts).

Seit Jahren kennt die Chemie viele Methoden, um Gold gezielt in Reaktionen einzusetzen, zum Beispiel zum Anheften ganz bestimmter Moleküle. Daher erweitern die teilweise mit Gold belegten Partikel nun den Baukasten an "kolloidalen Atomen". Die Chemiker hoffen, damit in Zukunft "kolloidale Moleküle" aufbauen oder neuartige kolloidale Kristalle herstellen zu können. Für die Grundlagenforschung eröffnet sich hier ein interessantes Feld für das Studium der Dynamik bei komplexen Wechselwirkungen von Festkörpern und Molekülen. Und auch für die Farbenchemie ergeben sich neue Ausblicke: Neue, schillernde Farben, die sich zum Beispiel mit der Umgebungstemperatur oder der Luftfeuchtigkeit ändern, sind keine Utopie mehr. Langfristig am attraktivsten erscheint jedoch die Anwendung in der optischen Datenverarbeitung.

Originalveröffentlichung:

Gang Zhang, Dayang Wang, Helmuth Möhwald
Decoration of Microspheres with Gold Nanodots - Giving Colloidal Spheres Valences (p NA)
Angewandte Chemie, December 2, 47/2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Molekül Partikel Schicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schnelle Wasserbildung in diffusen interstellaren Wolken

25.06.2018 | Physik Astronomie

Gleisgenaue Positionsbestimmung für automatisierte Bahnanwendungen

25.06.2018 | Informationstechnologie

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics