Vielseitiges Bakteriengift: Wie Erreger die menschliche Zellmembran für ihre Zwecke manipulieren

Stäbchenförmige Zellen des Bakteriums Listeria monocytogenes (gelb) bei der Anheftung an eine menschliche Zelle. Foto: GBF/ Rohde

Manchen aggressiven Bakterien gelingt es, in menschliche Körperzellen einzudringen und sie von innen heraus zu zerstören. Wie das zum Beispiel der Lebensmittel-Keim Listeria monocytogenes anstellt, hat ein Team von Wissenschaftlern der Gesellschaft für Biotechnologische Forschung (GBF) in Braunschweig und der Universität Gießen untersucht. Ihr Ergebnis: Die Bakterien sondern ein Gift ab, das die Oberfläche menschlicher Zellen stark verändert. Die Keime können die Abwehrmechanismen der Zelle dann aushebeln und leichter in die Zellen eindringen. Ihre Erkenntnisse haben die Wissenschaftler im Fachmagazin Cellular Microbiology veröffentlicht.

Die Membran, die menschliche Zellen umgibt, hat eine dickflüssigölige Beschaffenheit. In bestimmten Regionen der Zelloberfläche – Wissenschaftler nennen sie „Rafts“, also Flöße – konzentrieren sich Fettmoleküle und spezielle Proteine. „Die Rafts sind entscheidend für viele biochemische Prozesse“, erklärt GBF-Arbeitsgruppenleiter Dr. Siegfried Weiß. „Hier verankern sich wichtige Steuerungs-Moleküle, und hier verarbeitet die Zelle Signale, die sie von außen erhält.“

Auf diese Schlüssel-Zonen hat es auch Listeria monocytogenes abgesehen: Das Bakterium produziert ein Zellgift, das bewirkt, dass mehrere kleine Raft-Regionen auf der Zelloberfläche zu einem großen „Super-Raft“ zusammenwachsen. „Dieser Vorgang aktiviert die Steuerungs-Moleküle an den Rafts“, erklärt GBF-Nachwuchsforscher Nelson Gekara. „Sie lösen jetzt in der Zelle unterschiedliche Wirkungen aus: Botenstoffe werden freigesetzt, Abwehrmechanismen der Zelle blockiert, ihr Stoffwechsel im Interesse des bakteriellen Eindringlings manipuliert.“ Außerdem dienen die Rafts dem Erreger als Einfall-Pforte: Hier kann das Bakterium die Zellmembran leicht durchlöchern und so in die Wirtszelle eindringen.

Listeria monocytogenes gelangt über verdorbene Lebensmittel in den menschlichen Körper und kann dort Darmerkrankungen auslösen. Gefürchtet sind die schwer wiegenden Komplikationen, die eine solche Infektion in einzelnen Fällen verursacht: Menschen mit einem geschwächten Immunsystem erkranken beispielsweise an Hirnhautentzündungen; schwangere Frauen erleiden Fehlgeburten.

„Der Mechanismus, mit dem Listeria die Oberflächen seiner Zielzellen angreift, kann uns viel über Grundprinzipien von Infektionen erklären“, sagt Weiß. „Wir vermuten, dass andere, medizinisch weit bedeutendere Erreger ähnlich vorgehen – zum Beispiel Streptokokken oder Bacillus anthracis, der Erreger von Milzbrand.“ Zudem hofft der GBF-Wissenschaftler: „Das Zellgift von Listeria könnte uns helfen, die Funktion und Bedeutung der Rafts auf unseren Zelloberflächen besser zu verstehen.“

Ausführliche Informationen bietet der Originalartikel: Gekara, N., Jacobs, T., Chakraborty, T. and Weiss, S. The cholesterol dependent cytolysin Listeriolysin O aggregates rafts via oligomerization. Der Artikel ist jetzt als Vorab-Publikation in der Online-Ausgabe der Fachzeitschrift Cellular Microbiology erschienen

Media Contact

Manfred Braun idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer