Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismen zum Ablesen des Codes des Lebens entschlüsselt

09.05.2005


Albert Jeltsch, Professor für Biochemie an der International University Bremen (IUB), und seinen Mitarbeitern gelang es, zusammen mit Wissenschaftlern der Emory University Medical School in Atlanta und der University of Rochester (USA) grundlegende Mechanismen der biologischen DNA-Erkennung als Teil des Genregulationsprozesses aufzuklären. Die Studie ist in der aktuellen Ausgabe von Cell (Volume 121 Issue 3: May 5, 2005; http://www.cell.com) veröffentlicht.



Das menschliche Erbgut enthält ca. 20000-30000 Gene als Informationseinheiten. Diese werden im Verlauf der Entwicklung eines Menschen durch einen hochkomplexen Prozess, der Genregulation, gezielt aktiviert und deaktiviert. Eine Schlüsselrolle kommt hierbei speziellen Proteinen zu, die die Sequenzen der aktuell benötigten Gene erkennen können, sie ablesen und aktivieren.

... mehr zu:
»DNA »DNA-Sequenz »Enzym »Protein »Sequenz


Wie diese Proteine DNA-Sequenzen erkennen, untersuchten die Bremer Wissenschaftler der Forschergruppe von Albert Jeltsch exemplarisch an dem bakteriellen Enzym Dam zusammen mit ihren amerikanischen Projektpartnern, Prof. Xiaodong Cheng und seinem Team: Offensichtlich tastet sich das Enzym schrittweise an die gesuchte Sequenz heran, indem es sich zunächst unspezifisch an die DNA anlagert, an ihr entlang gleitet und zunehmend spezifische Kontakte ausbildet, je ähnlicher die DNA-Sequenz der gesuchten Sequenz wird. Bei diesen Kontakten handelt es sich um Wasserstoffbrückenbindungen und sterische Interaktionen zwischen dem Enzym und der DNA. Ist die gesuchte Sequenz identifiziert, modifiziert das Enzym den DNA-Abschnitt biochemisch durch Anlagerung von Methyl-Gruppen und setzt so unter anderem Genregulationsprozesse in Gang. Welche DNA Sequenz dabei als Zielsequenz erkannt wird, hängt von der jeweils spezifischen Proteinstruktur des Enzyms ab, das sich an die DNA anlagert.

Erstmals konnten die Forscher drei verschiedene DNA-Enzym-Strukturen beschreiben, die verschiedenen Stadien der schrittweisen Sequenzerkennung entsprechen: 1. Das Dam-Enzym, das sich an einen DNA-Abschnitt mit einer völlig anderen, als der gesuchten Sequenz angelagert hat, 2. einen Dam-DNA-Komplex, bei dem die DNA-Sequenz der Zielsequenz sehr ähnlich ist, und 3. einen Komplex, bei dem die DNA-Sequenz im Enzym-DNA-Komplex exakt der Zielsequenz entspricht. Diese Strukturen belegen, wie die Zunahme der Enzym-DNA-Kontakte im Zuge der Sequenzerkennung durch eine räumliche Umlagerung des Enzyms zustande kommt. Die Bremer Biochemiker überprüften diese Ergebnisse, indem sie gezielt die Erkennungssequenz des Enzyms durch Austausch einzelner Bausteine des Proteins veränderten und so ein entsprechend verändertes DNA-Erkennungsverhalten des Enzyms erzielten.

"Die Erkennung von DNA durch Enzyme und andere Proteine ist einer der fundamentalsten Lebensvorgänge. Die hier am Beispiel des bakteriellen Dam-Enzyms gefundenen Prinzipien lassen sich auch auf DNA-Erkennungsprozesse bei höheren Lebensformen, wie etwa dem Menschen, übertragen. Wir machen Grundlagenforschung, aber detailliertere Prozesskenntnisse ermöglichen es auf lange Sicht, die Gen-Regulation und die Reparatur von Gendefekten besser zu steuern. Wichtig kann dies für die Behandlung von Krankheiten sein, die mit einer Fehlsteuerung von Genen einhergehen, wie z.B. Tumorerkrankungen", so Jeltsch.

Fragen beantwortet:

Prof. Dr. Albert Jeltsch
Professor of Biochemistry
Tel.: 0421 200-3247
E-Mail: a.jeltsch@iu-bremen.de

Dr. Kristin Beck | idw
Weitere Informationen:
http://www.cell.com
http://www.iu-bremen.de
http://www.iu-bremen.de/directory/02802/

Weitere Berichte zu: DNA DNA-Sequenz Enzym Protein Sequenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biomarker besser nachweisen: Bremer Forscher entwickeln neue Methode mit Mikrokapseln
14.08.2018 | Jacobs University Bremen gGmbH

nachricht Grönland: Tiefe des Schmelzwassereintrags beeinflusst Planktonblüte
14.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics