Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Uhren - robust und sensibel zugleich

09.09.2004


Erkenntnisse über die Steuerung des biologischen Tagesrhythmus können zu besserem Verständnis menschlicher Krankheiten führen, berichtet deutsch-amerikanisches Forscherteam


Die genetischen Regelkreise der biologischen Uhr sind bei der Fruchtfliege analog zu denen beim Menschen aufgebaut: Sie bestehen aus zwei Rückkopplungsschleifen, die ähnlich wie Thermostate funktionieren und konkret die Produkte der Gene "per" und tim" regeln: Steigt die Konzentration eines Genprodukts über dem Sollwert, wird die Produktion des entsprechenden Proteins ausgeschaltet, und umgekehrt.
Bild: Max-Planck-Institut für Dynamik komplexer technischer Systeme



Unsere biologische Uhr, der zirkadiane Rhythmus, wird beim Reisen über mehrere Zeitzonen hinweg durcheinander gebracht, aber der Körper gewöhnt sich sehr schnell an den neuen Tag-Nacht-Rhythmus. Anhand der biologischen Uhr der Fruchtfliege gelang es jetzt Wissenschaftlern des Max-Planck-Instituts für Dynamik komplexer technischer Systeme in Magdeburg und des Institute for Collaborative Biotechnologies der University of California in Santa Barbara/USA, mit Hilfe von Computermodellen die Ursachen für das Zusammenspiel zwischen Robustheit und Sensitivität der inneren Uhr genauer zu identifizieren. Diese Studien können zu einem vertieften Verständnis des "Jet Lag" sowie menschlicher Krankheiten beitragen, sie erlauben aber auch generellere Einblicke in den "Sinn" der Komplexität zellulärer Regelkreise. Ihre Ergebnisse haben die Wissenschaftler in der aktuellen Ausgabe von Proceedings of the National Academy of Sciences USA (PNAS, 7. September 2004) veröffentlicht.



Die biologische Uhr im Menschen wie auch in einfacheren Organismen dient dazu, das Verhalten an den Tag-Nacht-Rhythmus anpassen zu können. Alltagserfahrungen wie neuere Studien mit Computermodellen der internen Uhr zeigen, dass diese sich häufig robust verhält, also nicht leicht gestört werden kann. Dabei besteht auf molekularer Ebene die Herausforderung an das Design der Uhr darin, zuverlässig ein komplexes dynamisches Verhalten (Oszillationen der Konzentrationen von Genprodukten) zu erzeugen, das zudem durch Licht mit der Außenwelt synchronisiert werden kann, um beispielsweise die Periodenlänge der Uhr an die jahreszeitlich unterschiedliche Tagesdauer anzupassen.

Für Studien des zirkadianen Rhythmen nutzen Wissenschaftler häufig die Fruchtfliege, da die zugrunde liegenden genetischen Regelkreise analog zu denen beim Menschen aufgebaut sind. Im Kern bestehen diese aus zwei negativen Rückkopplungsschleifen (siehe Abb.), die ähnlich wie Thermostate funktionieren: Liegt die Konzentration eines Genprodukts (Temperatur) über dem Sollwert, wird die Produktion des entsprechenden Proteins (die Heizung) ausgeschaltet, und umgekehrt. In der zirkadianen Uhr führt die Zeitverzögerung zwischen der Aktivierung der Gene "per" und "tim" und dem Auftauchen der Proteine Per und Tim zu den beobachteten Oszillationen. Doch es ist weitgehend ungeklärt, warum die Uhr eigentlich über zwei parallele Regelkreise verfügt. Denn im Prinzip würde ein einziger Regelkreis für die Generierung eines Rhythmus ausreichen; die "unnötige" Komplexität der Uhr ist demnach erklärungsbedürftig.

Ausgangspunkt des aktuellen Forschungsprojekts zwischen Wissenschaftlern aus Santa Barbara und Magdeburg war nun die Hypothese, dass die komplizierte Architektur der Regelkreise für die Robustheit des Systems notwendig ist. Um dies zu überprüfen, untersuchten sie mit systemwissenschaftlichen Methoden anhand von Computermodellen, wie störanfällig alternative Architekturen der zirkadianen Uhr entweder mit einer oder zwei Rückkopplungsschleifen sind. Dabei stellten die Wissenschaftler fest, dass im Wesentlichen die Netzwerkarchitekturen - weitgehend unabhängig davon, wie das Verhalten der modellierten Regelkreise aussah - die Stellen bestimmte, an denen die Modelle empfindlich bzw. robust auf Störungen reagierten. Dies erlaubte zum Beispiel Vorhersagen über bestimmte Klassen von sensitiven Regulationsmechanismen, die auch bei menschlichen Krankheiten mit Rhythmusstörungen eine besondere Rolle spielen. Die vergleichende Untersuchung der Modelle zeigte anschließend, dass die Komplexität der "realen" zirkadianen Uhr nicht einfach mit Robustheit gegenüber allen möglichen Störungen begründet werden kann. Vielmehr scheinen die zwei verschalteten Regelkreise die Präzision und Einstellbarkeit der Uhr bei "normalen" Störungen individueller Regulationsmechanismen zu fördern, wohingegen eine komplexere Struktur die Anfälligkeit gegenüber seltenen (komplizierten) Störungen erhöht.

Die Wissenschaftler fanden zudem Hinweise darauf, dass biologische Zellen das in der Technik häufig verwendete Prinzip der hierarchischen Regelungsstruktur benutzen, um einen optimalen Kompromiss zwischen Robustheit und (unvermeidbarer) Sensitivität zu erreichen. Dabei werden die Sensitivitäten an einer zentralen Stelle konzentriert, wodurch die individuellen Funktionen robuster werden, aber bei gezielten Attacken auf die wenigen zentralen Komponenten eine Katastrophe eintritt. In der Technik wird dieses Prinzip zum Beispiel für das Design von Kampfflugzeugen verwendet, bei denen die sensibelsten elektronischen Komponenten direkt unter dem Pilotensitz installiert sind, anstelle über das gesamte Flugzeug verteilt zu werden. Für die zirkadiane Uhr zeigten die jetzt publizierten Untersuchungen, dass die komplexe Struktur der "realen" Uhr sich genau dieses Prinzip zu Nutze macht, um ihre Robustheit insgesamt zu erhöhen. Eine leicht unterschiedliche Struktur des Regelkreises könnte allerdings die Sensitivität unter bestimmten Bedingungen verringern, so dass die beteiligten Wissenschaftler weitergehende Untersuchungen unter "lebensnaheren" Bedingungen planen.

Generell können die in Kooperation zwischen Magdeburg und Santa Barbara erzielten Ergebnisse zu einem tieferen Verständnis der Komplexität lebender Zellen verhelfen. Die neuen Erkenntnisse können zudem für die Untersuchung und Beeinflussung biologischer Rhythmen genutzt werden, da diese z.B. die Identifikation viel versprechender Ziele für neuartige Medikamente erlauben, auch unabhängig von kleineren Variationen zwischen den zu behandelnden Individuen.

Weitere Informationen erhalten Sie von:

Dr. Jörg Stelling
Max-Planck-Institut für Dynamik
komplexer technischer Systeme, Magdeburg
Tel.: 0391 6110-475
Fax: 0391 6110-503
E-Mail: stelling@mpi-magdeburg.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-magdeburg.mpg.de

Weitere Berichte zu: Computermodell Komplexität Regelkreis

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics