Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knoblauch-Substanz zerstört Krebszellen selektiv

30.12.2003



Anhand einer neuen Methode werden Krebszellen selektiv zerstört während gesunde Zellen intakt bleiben.


Wissenschaftler des Weizmann Instituts haben Krebstumore in Mäusen zerstört, indem sie eine chemische Substanz benutzten, die auf natürliche Weise in Knoblauch vorkommt. Der Schlüssel zum Erfolg der Wissenschaftler liegt in der Entwicklung eines einzigartigen, zweistufigen Systems zum Einschleusen der krebszerstötenden Substanz in die Tumorzellen.

Allizin, so der Name dieser chemische Substanz, gibt dem Knoblauch sein augeprägtes Aroma und seinen Geschmack. Bereits seit vielen Jahren wissen Wissenschaftler, die Allizin untersuchen, dass es ebenso toxisch wie scharf ist. Es hat sich herausgestellt, dass es nicht nur Krebszellen, sondern auch Zellen von krankheitserregenden Mikroben und gesunde menschliche Körperzellen tötet. Glücklicherweise ist Allizin eine sehr instabile Substanz, die sich sehr schnell abbaut, sobald sie mit Nahrung aufgenommen wird, und unsere gesunden Körperzellen dadurch verschont. Der rapide Abbau dieser Substanz und ihre unspezifische Toxizität stellten ein doppeltes Hindernis in der Entwicklung einer auf Allizin basierenden Therapie dar.


An der Fakultät für Biochemie des Weizmann Instituts haben Dr. Aharon Rabinkov, Dr. Talia Miron und Dr. Marina Mironchik, die mit den Professoren David Mirelman und Meir Wilchek zusammenarbeiten, diese beiden Probleme durch die Entwicklung einer raffinierten Methode lösen können, die mit der punktuellen Genauigkeit einer schlauen Bombe funktioniert. Über ihre Forschungsergebnisse wurde in der Dezember-Ausgabe von Molecular Cancer Therapeutics berichtet.

Die Methode basiert auf der natürlichen Synthese Allizins. Allizin ist in ganzen, unbeschädigten Knoblauchzehen nicht existent; es ist das Produkt einer biochemischen Reaktion zweier Substanzen, die in winzigen, aneinander liegenden "Fächern" in jeder Knoblauchzehe vorhanden sind.

Die beiden Substanzen sind ein Enzym, Alliinase, und eine normalerweise inaktive Substanz namens Alliin. Wird die Knoblauchzehe jedoch beschädigt - entweder durch Bodenparasiten, die das weiche Gewebe anknabbern, oder durch Köche, die eine Knoblauchsosse zubereiten möchten - werden die Häute zwischen den verschiedenen "Fächern" aufgerissen und eine schnelle Allizin-Produktion erfolgt.

Die Wissenschaftler erkannten, dass auf diese Weise direkt am Tumorgewebe wiederholt hergestelltes Allizin die höchstmögliche Konzentration der toxischen Moleküle für die Tötung von Krebszellen zur Verfügung stellen kann.

Um den angepeilten Tumor genau ins Visier zu nehmen, nutzten die Wissenschaftler die Tatsache, dass die meisten Arten von Krebszellen auffällige Rezeptoren an ihrer Oberfläche aufweisen. Ein Antikörper, der darauf "programmiert" wird, die charakteristischen Rezeptoren eines Tumors zu erkennen, bindet sich dann chemisch an das Enzym Alliinase. Sobald er in die Blutbahn eingespritzt wird, sucht der Antikörper nach diesen Tumorzellen und bindet sich und das mitgeführte Enzym an sie. Die Wissenschaftler verabreichen dann in Abständen die zweite Komponente, das Alliin. Sobald es auf die Alliinase stößt, verwandelt die ausgelöste chemische Reaktion die normalerweise inaktiven Alliin-Moleküle in tödliche Allizin-Moleküle, die in die Tumorzelle eindringen und sie abtöten. Aufgrund des präzisen Eingabesystems, bleiben die umliegenden, gesunden Zellen intakt.

Mit dem Einsatz dieser Methode hat das Team es geschafft, das Heranwachsen von gaströsen Tumoren in Mäusen zu blockieren. Die den Tumor stoppende Wirkung wurde bis zum Ende der Experimentphase beobachtet, noch lange nachdem das intern produzierte Allizin abgegeben wurde. Die Wissenschaftler betonen, dass die Methode bei fast allen Krebsarten wirken könnte, solange sich ein spezifischer Antikörper herstellen lässt, der die für die Krebszellen typischen Rezeptoren identifiziert. Das Verfahren könnte von unschätzbarem Wert sein, um Metastasenbildung nach chirurgischen Eingriffen zu verhindern. "Obwohl Ärzte nicht herausfinden können, wohin die metastatischen Zellen gewandert sind und wo sie sich eingenistet haben," sagt Mirelman, " sollte der Antikörper-Alliinase-Alliin-Komplex dazu imstande sein, sie überall im Körper aufzuspüren und zu zerstören."

Prof. David Mirelmans Forschungsarbeit wird finanziert von: Y. Leon Benoziyo Institute for Molecular Medicine Robert Drake, Niederlande; Mr. And Mrs. Henry Meyer, Wakefield, Rhode Island; M.D. Moross Institute for Cancer Research; und von The Late Claire Reich, Forest Hills, New York.

Prof. Mirelman hält den Ben-Brender Lehrstuhl für Mikrobiologie und Parasitologie.

Das Weizmann Institut in Rehovot, Israel, gehört weltweit zu den führenden multidisziplinären Forschungseinrichtungen. Seine 2500 Wissenschaftler, Studenten, Techniker und anderen Mitarbeiter sind in einem breiten Spektrum naturwissenschaftlicher Forschung tätig. Zu den Forschungszielen des Instituts gehören neue Möglichkeiten im Kampf gegen Krankheit und Hunger, die Untersuchung wichtiger Fragestellungen in Mathematik und Informatik, die Erforschung der Physik der Materie und des Universums und die Entwicklung neuer Werkstoffe und neuer Strategien für den Umweltschutz.

Ariela Rosen | idw
Weitere Informationen:
http://wis-wander.weizmann.ac.il

Weitere Berichte zu: Alliinase Allizin Antikörper Enzym Krebszelle Rezeptor Tumorzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bedeutung des „Ozeanwetters“ für Ökosysteme
21.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht In Form gebracht
21.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics