Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterielles Erbstück in höheren Organismen entdeckt

18.12.2003


Mitochondrien sind Energie erzeugende Bestandteile höherer Zellen - und haben eine bewegte Vergangenheit. Sie sind hervorgegangen aus frei lebenden Bakterien, die von Einzellern vor etwa 1,5 Milliarden Jahren aufgenommen und dauerhaft in die Zellen integriert wurden. Mittlerweile könnten Mitochondrien nicht mehr eigenständig existieren, weil sie den Großteil ihrer ursprünglich vorhandenen Erbinformation DNA verloren haben. Die meisten Mitochondrien-Proteine werden nun von der DNA im Zellkern codiert und im Zellinneren synthetisiert, unter anderem auch die so genannten -barrel-Proteine, die die äußere Mitochondrien-Membran durchspannen und dort eine Vielzahl von Funktionen erfüllen. Einige Komponenten der Mitochondrien erinnern noch an deren Entwicklungsgeschichte. Ein Beispiel ist das Protein Tob55, das jetzt von einem Wissenschaftler-Team um Professor Walter Neupert vom Adolf-Butenandt-Institut für Physiologische Chemie der LMU gefunden wurde, und maßgeblich am Einbau der -barrel-Proteine in die äußere Mitochondrien-Membran beteiligt ist (Nature, Bd. 426, S. 862-866, 2003).


Tob55 findet sich in den Zellen höherer Organismen und weist zudem eine hohe Ähnlichkeit zu einem Membranprotein in bestimmten Gram-negativen Bakterien auf, die als Vorläufer der Mitochondrien gelten. Die Übereinstimmung bezieht sich auf die Struktur und die Funktion des bakteriellen Proteins Omp85, welches als essentiell für den Einbau von -barrel-Proteinen in die bakterielle Außenmembran beschrieben worden ist. Ähnlich wirkt auch Tob55, das als Bestandteil eines Proteinkomplexes mit -barrel-Proteinen assoziiert und diese in die äußere Mitochondrienmembran insertiert.

Diese hohe strukturelle und funktionelle Konservierung zeugt nicht nur von der bakteriellen Vergangenheit der Mitochondrien, sondern zwingt den -barrel-Proteinen auch einen Umweg auf: Sie müssen erst die äußere Mitochondrien-Membran passieren, um anschließend von der Innenseite der Membran in diese mit Hilfe von Tob55 eingebaut zu werden.


Der Umweg der -barrel-Proteine hat mit der im Laufe ihrer Entwicklungsgeschichte gewonnenen Eigenschaft der Mitochondrien als integrierter Zellbestandteil zu tun. Proteine, die Omp85 transportieren, werden im Inneren des Bakteriums synthetisiert und lagern sich deshalb dann an der Innenseite der Membran an. Bei den Mitochondrien in höheren Organismen dagegen nähern sich die im Zellinneren synthetisierten -barrel-Proteine den Mitochondrien von außen an. Das tunnelförmige Tob55 und sein bakterieller Gegenpart Omp85 durchspannen die jeweilige Membran aber in derselben Orientierung - damit liegt das Eintrittsende für die zu transportierenden Proteine innen. Das hat zur Folge, dass die -barrel-Proteine nicht sofort mit Tob55 assoziieren können, weil sie sich von der falschen Seite nähern.

Die Mitochondrien haben im Laufe ihrer Evolution einen Umweg gefunden, der die -barrel-Proteine schließlich zum "richtigen" Ende von Tob55 bringt, so dass sie letztlich doch in die äußere Mitochondrien-Membran eingebaut werden können. Neben dem TOB-Komplex, dessen zentrale Komponenete Tob55 bildet, gibt es einen weiteren Proteinkomplex in der mitochondrialen Außenmembran, den TOM-Komplex. Dieser erkennt mitochondriale Proteine, die sich der Außenseite der Membran nähern und bringt sie über die Außenmembran der Mitochondrien.

Die Forscher vermuten, dass dieser auch die -barrel-Proteine durch die äußere Mitochondrienmembran bringt, so dass sie dann von deren Innenseite aus - entsprechend ihren bakteriellen Pendants - an Tob55 anlagern können. Dieser Umweg verlangt, dass sich die -barrel-Proteine erst durch die Membran und dann wieder in die entgegen gesetzte Richtung bewegen, um an ihren Zielort zu gelangen. Erst dieser zusätzliche Schritt ermöglicht den Einsatz des über Jahrmillionen hoch konservierten Proteins Tob55, dessen essentielle Rolle im Transport wichtiger Mitochondrienproteine erst jetzt nachgewiesen werden konnte.

Ansprechpartner:

Professor Dr. Walter Neupert
Alfred-Butenandt-Institut für Physiologische Chemie der LMU
Tel.: + 49 89 2180 77095
E-mail: Neupert@bio.med.uni-muenchen.de

Cornelia Glees-zur Bonsen | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Berichte zu: Membran Mitochondrien-Membran Mitochondrium Protein Tob55

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics