Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirn produziert Wachstumsfaktoren die beim Lernen und der Gedächtnisbildung beteiligt sind

06.11.2003


Die fehlerfreie Entwicklung von Gehirnzellen und ihrer Verschaltungen untereinander bilden die Grundlage von Lernen und Gedächtnisbildung - Prozesse, die trotz immenser Fortschritte immer noch nicht umfassend verstanden sind. Dem Team um Prof. Dr. Arthur Konnerth und PD Dr. Christine Rose vom Institut für Physiologie der LMU gelang nun der Nachweis, dass bestimmte, vom Gehirn produzierte Wachstumsfaktoren beim Lernen und der Gedächtnisbildung beteiligt sind - mit bislang unbekannter Wirkungsweise (Nature, Bd. 426, S. 74-78, 2003). Überraschend war auch, dass die so genannten Gliazellen, denen bislang nur Stützfunktionen zugeschrieben wurden, dabei eine entscheidende Rolle spielen. "Unsere Entdeckung ist wichtig für ein besseres Verständnis verschiedener Gehirnfunktionen", so Konnerth. "Sie bietet aber auch einen neuen, vielversprechenden Ansatzpunkt für die Behandlung degenerativer Gehirnerkrankungen."



Bereits bekannt war, dass Störungen in der körpereigenen Produktion dieser Wachstumsfaktoren zu Defiziten im Lernvermögen führen. Die zugrunde liegenden zellulären Wirkmechanismen waren zwar noch weitgehend unverstanden, aber Konnerth und seine Mitarbeiter beobachteten schon vor Jahren, dass kleinste Mengen des im Gehirn produzierten Wachstumsfaktors BDNF ("brain-derived neurotrophic factor") elektrische Signale und Kalziumveränderungen in Nervenzellen hervorrufen. Kalzium ist ein intrazellulärer Botenstoff von zentraler Bedeutung für alle Körperprozesse, von der Muskelanspannung bis zur normalen Gehirnfunktion. Aufgrund der vorliegenden Ergebnisse wurde vermutet, dass diese Wachstumsfaktoren vor allem auf Nervenzellen, die Hauptträger der Informationsverarbeitung und -weiterleitung, wirken.



In ihrer neuen, von der Deutschen Forschungsgemeinschaft geförderten Studie setzten Konnerth, Rose und ihr Team auf eine innovative Methodenkombination: Neben molekularbiologischen Techniken kamen moderne Hochleistungsmikroskope zum Einsatz, um auch kleinste Veränderungen der Kalziumkonzentrationen in einzelnen, lebenden Gehirnzellen verfolgen zu können. So gelang der Nachweis, dass die Wirkung von Wachstumsfaktoren nicht auf Nervenzellen beschränkt ist. Tatsächlich bewirkt der Wachstumsfaktor BDNF auch in den so genannten Gliazellen schnelle Veränderungen des zellulären Kalziumspiegels.

Gliazellen stellen den zahlenmäßig häufigsten Zelltyp im Gehirn dar und wurden lange Zeit als reine Stütz- und Versorgungseinheiten für Nervenzellen, welche sie gewissermaßen "umkleiden", angesehen. "Es zeichnet sich aber immer stärker ab, dass Gliazellen auch die Kommunikation zwischen Nervenzellen beeinflussen", berichtet Rose. "Die von uns neu entdeckte Aktivierung von Gliazellen durch BDNF weist darauf hin, dass Wachstumsfaktoren eine Interaktion zwischen Nerven- und Gliazellen auslösen, die über diesen Weg direkt in die Informationsverarbeitung im Gehirn eingreifen."

Ein weiterer überraschender Befund der Untersuchungen ist, dass die Wirkung von BDNF auf Gliazellen über völlig andere molekularen Mechanismen vermittelt wird als in Nervenzellen. Konnerth, Rose und ihr Team konnten zeigen, dass die Wirkung von BDNF durch so genannte Rezeptoren, also bestimmte Proteine in der Zellmembran, vermittelt wird. Ihnen wurde bislang nur eine Rolle bei der Pufferung des Wachstumsfaktors zugeschrieben.

Vieles spricht dafür, dass diese neu entdeckte Wirkung von Wachstumsfaktoren von grundlegender Bedeutung für die normale Funktion des Gehirns ist - vor allem auch für die Plastizität des Nervensystems bei Lern- und Wachstumsvorgängen. Da neurodegenerative Erkrankungen wie die Alzheimer’sche oder die Parkinson’sche Krankheit mit massiven Störungen dieser Prozesse einhergehen, eröffnet das Wissen über die Wirkweise der Wachstumsfaktoren neue Wege in der Entwicklung von medikamentösen Therapieansätzen bei derart verheerenden Gehirnschädigungen.

Ansprechpartner:

Prof. Dr. Arthur Konnerth
Institut für Physiologie der LMU
Tel.: +49-89-5996-510, Fax: -512
E-mail: konnerth@lrz.uni-muenchen.de

Cornelia Glees-zur Bonsen | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Berichte zu: BDNF Gedächtnisbildung Gliazelle Nervenzelle Wachstumsfaktor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics