Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in Schlüsselschritte der biologischen Signalübertragung

14.07.2003


Max-Planck-Forschern beobachten erstmals, wie Nervenzellen die Ausschüttung von Vesikeln über einströmendes Kalzium steuern


Beleuchtung der untersten Zellschicht mittels Totalreflexion. Die mit Botenstoff gefüllten Vesikel in dieser Grenzschicht werden zur Fluoreszenz angeregt. Ein zweiter Laserstrahl (zur Vereinfachung hier nicht abgebildet) regt den Farbstoff an, der die Kalziumkonzentration ermittelt.

Foto: Max-Planck-Institut für experimentelle Medizin


Kalziumkonzentrationsmessung in der Zelle. Der blaue Verlauf stellt die Gesamtkonzentration von Kalzium in der Zelle da, die rote Überlagerung die lokale Kalziumkonzentration einer Mikrodomäne. Dabei ist ein elementarer Kalziumeinstrom als deutliche Spitze sichtbar.

Foto: Max-Planck-Institut für experimentelle Medizin



Synapsen sind Schnittstellen zwischen Nervenzellen, wo elektrische Impulse in chemische Signale umgewandelt und damit Signale übertragen werden. Durch einen Nervenimpuls werden Vesikel, winzige mit Botenstoffen gefüllte Bläschen, freigesetzt und entleeren ihren Inhalt in die nachgeschaltete Zelle. Eine Forschergruppe des Max-Planck Instituts für experimentelle Medizin (Göttingen) und der École Supérieure de Physique et Chimie (Paris) hat jetzt erstmals direkt beobachtet, wie die Fusion einzelner Vesikel mit der Zellmembran durch eine lokale Erhöhung der Kalziumkonzentration gesteuert wird. In der aktuellen Ausgabe der Fachzeitschrift "Nature Neuroscience" berichten die Wissenschaftler, dass Kalziumeinstrom und Vesikel nur weniger als einen Millonstel Meter voneinander entfernt sein dürfen, damit es tatsächlich zu einer Signalübertragung kommt. Zur Überraschung der Forscher führt eine erste Nervenreizung zu einer vorübergehenden Annäherung von Kalziumkanälen und Vesikeln in der Zelle, so dass die nachfolgenden Nervenimpulse eine bessere Chance haben, übertragen zu werden. Die Nervenzelle merkt sich also den ersten Impuls und geht in Position, um weitere Impulse dann mit höchster Effizienz übertragen zu können (Nature Neuroscience, 6. Juli 2003). Diese Einsichten sind von grundlegender Bedeutung für das Verständnis der Signalübertragung im Nervensystem.



Wenn Nervenzellen elektrische Impulse feuern, führt eine erneute Stimulation in kurzem zeitlichen Abstand häufig zu einer erhöhten Ausschüttung von Botenstoffen und damit zu einer verstärkten elektrischen Antwort der nachgeschalteten postsynaptischen Zelle. Wenn wir zum Beispiel erschrecken, setzen neuroendokrine Zellen des Nebennierenmarks große Mengen von Adrenalin in die Blutbahn frei. Unsere Aufmerksamkeit und Reaktionsfähigkeit wird dadurch erhöht. Interessanterweise beruhen diese Vorgänge auf einem sehr ähnlichen Prozess - der kontrollierten Ausschüttung von Botenstoffen durch Freisetzung von Vesikeln.

Neuroendokrine Zellen und Nervenzellen "verpacken" chemische Botenstoffe und Neurotransmitter in winzige, membranumhüllte Speicherbläschen, die Vesikel. Diese Container der Signalübertragung werden im Zellinneren gefüllt und an den Zellrand transportiert, wo sie erst nach einer Stimulation mit der äußeren Zellmembran verschmelzen. Dabei wird ihr Inhalt ausgeschüttet. Während bei der Hormonausschüttung typischerweise Hunderte von Vesikeln freigesetzt werden, bewirkt ein elektrischer Nervenimpuls häufig nur die Freisetzung eines einzelnen Bläschens. Die Fusion dieses Vesikels mit der Zellmembran löst eine kurzzeitige Erhöhung der Kalziumionen-Konzentration im Zellinneren aus. Dieser Anstieg erfolgt über spannungsabhängige Ionenkanäle in der Zellmembran: Durch eine elektrische Stimulation der Zelle öffnen sich diese Kanäle und Kalziumionen strömen ins Zellinnere. Kalzium-Sensormoleküle auf den Vesikeln detektieren diese erhöhte Kalziumkonzentrationen und leiten die Verschmelzung der Vesikel mit der Zellmembran ein.

Doch die Freisetzung der Vesikel erfolgt nicht automatisch: Nicht jede elektrische Erregung setzt ein Vesikel frei, und manche Ausschüttung geschieht spontan, ohne vorherigen Nervenimpuls. Bislang war bekannt, dass ein Vesikel erst dann freigesetzt wird, wenn die Kalziumkonzentration in der Zelle extrem steigt. Die beobachtete "Unzuverlässigkeit" der Datenübertragung ließe sich also dadurch erklären, dass die Kalziumkonzentration in der Nähe einzelner Vesikel unterschiedlich stark ansteigt. Das Kalzium wiederum gelangt durch spannungsabhängige Ionenkanäle, die durch einen elektrischen Nervenimpuls geöffnet werden, in das Zellinnere. Modellrechnungen sagen nun voraus, dass Vesikel vor allem dann freigesetzt werden, wenn sie sich in der Nähe von offenen Kalziumionenkanälen befinden.

Biophysikalische Experimente haben andererseits ergeben, dass sich Zellen vor zu hohen Kalziumkonzentrationen schützen, indem starke Kalziumpuffer den Großteil des einströmenden Kalziums wieder binden. Auf diese Weise begrenzen sie den Anstieg der intrazellulären Kalziumkonzentration räumlich und zeitlich. In Nervenzellen vergeht zwischen einer elektrischen Stimulation und der Freisetzung eines Vesikels weniger als eine tausendstel Sekunde. Diese Tatsache, zusammen mit der starken Abhängigkeit der Vesikelausschüttung von der Kalziumkonzentration, legen die Vermutung nahe, dass Kalziumionenkanäle und Vesikel dicht nebeneinander liegen sollten. Dann führt ein Kalziumeinstrom durch offene Ionenkanäle zu einem sprunghaften Anstieg der Kalziumkonzentration in der unmittelbarer Umgebung des an der Zellmembran verankerten Vesikels. Umgekehrt erklärt dieses Modell der "Kalzium-Mikrodomänen", warum die synaptische Übertragung manchmal auch nicht funktioniert: In diesem Fall sind Vesikel und Ionenkanal zu weit voreinander entfernt, so dass der Kalziumsensor des Vesikels diese Ionen nicht messen kann und die Verschmelzung mit der Zellmembran unterbleibt.

Der deutsch-französischen Forschergruppe ist es nun gelungen, sowohl die winzigen Vesikel und Kalziummikrodomänen als auch die Kalziumkonzentration in unmittelbarer Nähe der Vesikel direkt zu beobachten. Auf diese Weise erhielten die Wissenschaftler einen unmittelbaren Einblick in die Abfolge von Vesikeldynamik, lokalem Kalziumeinstrom und der Freisetzung des Botenstoffs. Für die Beobachtung der Vesikel nutzen die Wissenschaftler einen speziellen optischen Trick: Sie richteten einen Laserstrahl in einem flachen Winkel auf den Objektträger, auf dem sich die zu untersuchende Zelle befand. Durch den flachen Winkel wird der Laserstrahl an der Grenzfläche reflektiert wird (Totalreflexion). Ein Teil des Lichts dringt weniger als einen tausendstel Millimeter in die Zelle ein. Anstatt - wie sonst üblich - die Zelle insgesamt zu beobachten, ist diese Beleuchtung der Zelle auf eine dünne Schicht in unmittelbarer Nähe der Zellmembran beschränkt. Diese "Totalreflexionsmikroskopie" erlaubt es, Vorgänge, die im Kontaktbereich zwischen der Zelle und dem Objektträger stattfinden, also nahe der Zellmembran, gezielt zu beobachten.

Um gleichzeitig die Kalziumkonzentrationen messen zu können, wurden die neuroendokrinen Zellen mit zwei verschiedenen Farbstoffen markiert, die selektiv einerseits das Kalzium und andererseits die Vesikel hervorheben. Auf diese Weise wird bei der Verschmelzung eines Vesikels nicht nur der Botenstoff, sondern auch der Farbstoff ausgeschüttet, so dass eine kleine Farbwolke sichtbar wird (siehe Abbildung 2). Durch diese Kombination aus einem Kalziumfarbstoff, der nur bei sehr hohen Kalziumkonzentrationen sichtbares Fluoreszenzlicht erzeugt, und einer begrenzten Laser-Beleuchtung gelang es den Forschern, einzelne Kalziummikrodomainen als Lichtblitze zu beobachten. Aus dem Vergleich ihres räumlichen und zeitlichen Auftretens mit der Fusion einzelner Vesikel konnten die Wissenschaftler dann bestimmen, wie nahe Kalziumeinstrom und Vesikel beieinander liegen müssen, damit es tatsächlich zu einer Freisetzung des Botenstoffes kommt: 300 Nanometer sind die Grenze, ab der die Signalübertragung zuverlässig funktioniert.

Gleichzeitig beobachteten die Forscher, dass sich Kalziumionenkanäle auch ohne vorherige elektrische Stimulation öffneten, was die eher seltene spontane Ausschüttung von Botenstoffen erklärt. Hingegen öffnet ein elektrischer Nervenimpuls die Kalziumkanäle unmittelbar und erhöht so die Wahrscheinlichkeit der Verschmelzung eines Vesikels mit der Zellmembran. Überraschenderweise scheinen die Zellen selbst diese Abhängigkeit auszunutzen, um die Vesikelfusion präzise zu regeln: Die Forscher stellten fest, dass nach einem Kalziumeinstrom nicht nur die Wahrscheinlichkeit der Vesikelfusion erhöht ist, sondern auch, dass die Vesikel vorübergehend - dem Ort des Kalziumeinstroms näher rückten. Eine erneute elektrische Stimulation hat so in einem begrenzten Zeitfenster eine höhere Chance, übertragen zu werden.

Kontakt:

Max-Planck-Institut für Experimentelle Medizin, Göttingen
Prof. Walter Stühmer
Tel.: 0551 - 3899-646, Fax: -644
E-Mail: wstuehm@gwdg.de

Prof. Walter Stühmer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/experimentelle_medizin/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die „Luft“ im Ozean wird dünner - Sauerstoffgehalte im Meerwasser gehen weiter zurück
11.12.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Beleuchtung von Höhlen vertreibt Fledermäuse – die Farbe des Lichts spielt nur untergeordnete Rolle
11.12.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics