Myelin macht Reize schnell: Mechanismen der Myelinbildung im zentralen Nervensystem aufgeklärt

Damit Nervenzellen effizient Informationen über weite Distanzen übermitteln können, hat sich bei höheren Organismen die sogenannte saltatorische Erregungsleitung entwickelt. Diese wird ermöglicht, indem die zur Reizweiterleitung spezialisierten axonalen Fortsätze der Nervenzellen in bestimmten Abständen von Myelin – einer Art Isolierschicht – umgeben sind.

Im Falle von Erkrankungen wie Multipler Sklerose oder Leukodystrophien ist die Bildung beziehungsweise die Funktion des Myelins gestört. Die molekularen Mechanismen der Myelinbildung waren bisher noch weitgehend unverstanden. Zwei Arbeiten aus der Abteilung Molekulare Zellbiologie des Fachbereichs Biologie an der Johannes Gutenberg-Universität Mainz leisten nun einen wesentlichen Beitrag zum Verständnis dieser komplexen zellulären Prozesse.

Vereinfacht betrachtet springen bei der saltatorischen Erregungsleitung weitergeleitete Signale von einem nicht myelinisierten Bereich, dem Ranvierschen Schnürring, zum nächsten, was die Geschwindigkeit der Weiterleitung enorm erhöht. Im zentralen Nervensystem entsteht Myelin dadurch, dass Oligodendrozyten, ein bestimmter Typ von Gehirnzellen, ihre Zellfortsätze mehrfach um die Axone der Nervenzellen wickeln und einen kompakten Stapel von Zellmembranen ausbilden. Die Wissenschaftler aus der Abteilung Molekulare Zellbiologie unter der Leitung von Univ.-Prof. Dr. Jacqueline Trotter konnten nun zeigen, welche Mechanismen zur Bildung einer intakten Myelinscheide beitragen und wie die Nervenzellen Ort und Zeitpunkt der Myelinproduktion steuern.

Zum einen wurde in einer im Fachmagazin Journal of Cell Science veröffentlichten Arbeit gezeigt, dass ein endozytischer Recycling-Zyklus von Myelinproteinen für die spezifische Ausbildung von Myelindomänen von Bedeutung ist. Dabei werden die Proteine zunächst zur Zelloberfläche transportiert. Von dort werden sie durch Endozytose wieder in die Zelle aufgenommen, um in verschiedene Membrandomänen sortiert zu werden, die anschließend wieder an die Zelloberfläche gelangen. Dieser „Membranumbau“ scheint notwendig für die korrekte Bildung einer intakten Myelinscheide.

Weiterhin wurde im renommierten Journal of Cell Biology ein neuer Signalweg vorgestellt, der von der Interaktion eines neuronalen und eines oligodendroglialen Oberflächenmoleküls über die Aktivierung eines für die Myelinisierung essentiellen Signalmoleküls letztlich zu der lokalen Translation eines Hauptmyelinproteins im Oligodendrozyten führt. Diese Ergebnisse beschreiben eine Möglichkeit der Nervenzelle zu beeinflussen, an welchen Stellen oder zu welchem Zeitpunkt Myelin synthetisiert werden soll, und verdeutlicht die entscheidende Rolle beider Zelltypen für die Ausbildung der Grundlage einer effizienten Reizweiterleitung im zentralen Nervensystem.

Die Arbeiten wurden durch das Schwerpunktprogramm „Zellpolarität“ der DFG, Mittel der EU (STREP „Signalling and Traffic“) und der European Leukodystrophy Association sowie durch das DFG-Graduiertenkolleg „Entwicklungsabhängige und krankheitsinduzierte Modifikationen im Nervensystem“ gefördert.

Veröffentlichungen:
Christine Winterstein, Jacqueline Trotter, and Eva-Maria Krämer-Albers (2008). Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. Journal of Cell Science 121 (6), 834-842.

Robin White, Constantin Gonsior, Eva-Maria Krämer-Albers, Nadine Stöhr, Stefan Hüttelmaier and Jacqueline Trotter (2008). Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2-dependent RNA granules. Journal of Cell Biology 181 (4), 579-586.

Kontakt und Informationen:
Univ.-Prof. Dr. Jacqueline Trotter
Fachbereich Biologie
Abteilung Molekulare Zellbiologie
Johannes Gutenberg-Universität Mainz
Tel. +49 (0) 6131 39-20263
Fax +49 (0) 6131 39-23840
E-Mail: trotter@uni-mainz.de

Media Contact

Petra Giegerich idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer