Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tröpfchen als Labor

06.05.2008
Lab-on-a-Chip extrem: PCR-Schnelltest inklusive Probenvorbereitung im Taschenformat

Analytik und Diagnostik im Chipformat sind im Kommen, ihr praktischer Einsatz ist jedoch limitiert, da meist eine separate, nicht miniaturisierte Probenvorbereitung vorgeschaltet werden muss. Jürgen Pipper und sein Team vom Institute of Bioengineering and Nanotechnology in Singapur wollen das ändern.

Sie haben jetzt einen gendiagnostischen Schnelltest entwickelt, der die Vorbereitung realer biologischer Proben mit einer Polymerase-Kettenreaktion (PCR) auf einem Chip zu einer Einheit verbindet. Wie sie in der Zeitschrift Angewandte Chemie berichten, dient ein einzelnes Tröpfchen mit magnetischen Nanopartikeln, das durch ein magnetisches Feld auf dem Chip bewegt wird, in diesem miniaturisierten Gesamtanalysensystem als "Laborgerät" für alle Schritte.

Mit Hilfe der PCR lassen sich Gensequenzen vervielfältigen und identifizieren, etwa um einen Krankheitserreger zu entlarven. Dazu muss die Probe zyklisch ein bestimmtes Temperaturprogramm durchlaufen. Aufgrund der langsamen Heiz- und Abkühlzeiten dauert eine Labor-PCR meist mehrere Stunden. Die neue Chip-PCR schafft das inklusive Probenvorbereitung innerhalb von Minuten.

... mehr zu:
»PCR

Anders als bei anderen chipbasierten Methoden kann die reale Probe, z.B. ein Tröpfchen Blut, direkt auf den PCR-Chip gegeben werden, wo es mit einem Tröpfchen vermischt wird, das magnetische Partikel enthält. Diese tragen Antikörper auf ihrer Oberfläche, die spezifisch die interessierenden Zellen aus dem Blutströpfchen binden. Durch Bewegen eines Magneten unterhalb des Chips wird ein Tröpfchen mit den beladenen Magnetpartikeln aus dem Blutströpfchen förmlich wieder herausgezogen und zu den nächsten Stationen geführt - Tröpfchen einer Waschflüssigkeit. Das magnetische Tröpfchen wird jeweils mit dem Wasch-Tröpfchen vereinigt und anschließend wieder durch eine Bewegung des Magneten herausgezogen. Ein weiteres Tröpfchen liefert die für den Zellaufschluss notwendigen Enzyme und Reagenzien.

Die letzte Station ist die PCR-Station. Nach Vereinigung mit einem Reagenzien-Tröpfchen wird das magnetische Tröpfchen wie bei einem Uhrwerk im Kreis immer wieder über vier verschiedene Temperaturzonen geführt, an denen die für die PCR notwendigen unterschiedlichen Temperaturen eingestellt sind. Ein einzelner Zyklus dauert 8 s. Ein Fluoreszenz-Detektor oberhalb einer der Zonen überwacht den Fortgang der PCR (Echtzeit-PCR) und zeigt an, ob und in welcher Menge die gesuchte Gensequenz vorhanden ist.

Mit ihrem neuen PCR-Chip gelang es den Forschern, 30 Zellen, denen die Erbinformation für ein grün fluoreszierendes Protein eingepflanzt worden war, aus 25 µl Blut zu isolieren, 100fach aufzukonzentrieren, zu reinigen, aufzuschließen und in einer Echtzeit-PCR das Gen für das grüne Protein nachzuweisen - und das alles innerhalb von nur 17 min.

Angewandte Chemie: Presseinfo 17/2008

Autor: Jürgen Pipper, Institute of Bioengineering and Nanotechnology (Singapore), http://www.ibn.a-star.edu.sg/research_areas_04_details.php?id=103

Angewandte Chemie 2008, 120, No. 21, 3964-3968, doi: 10.1002/ange.200705016

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de
http://www.ibn.a-star.edu.sg/research_areas_04_details.php?id=103

Weitere Berichte zu: PCR

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics